摘要:
An inkjet recording apparatus includes: a head unit including: an ultrasonic wave generation unit that generates ultrasonic waves; an ultrasonic wave focus unit that focuses the ultrasonic waves to an ultrasonic wave focus position; an ultrasonic wave transmission unit that propagates the ultrasonic waves from the ultrasonic wave focus unit; and a wall plate that covers the ultrasonic wave generation unit, the ultrasonic wave focus unit and the ultrasonic wave transmission unit; an annular film that rotates while sliding along an exterior of the head unit; a film drive mechanism that rotates the film; and an ink application unit that applies ink over the film to form an ink layer, wherein the ultrasonic wave focus position of the head unit is directing to a position of the ink layer so as to eject an ink from the ink layer.
摘要:
An inkjet recording apparatus includes: a head unit including: an ultrasonic wave generation unit that generates ultrasonic waves; an ultrasonic wave focus unit that focuses the ultrasonic waves to an ultrasonic wave focus position; an ultrasonic wave transmission unit that propagates the ultrasonic waves from the ultrasonic wave focus unit; and a wall plate that covers the ultrasonic wave generation unit, the ultrasonic wave focus unit and the ultrasonic wave transmission unit; an annular film that rotates while sliding along an exterior of the head unit; a film drive mechanism that rotates the film; and an ink application unit that applies ink over the film to form an ink layer, wherein the ultrasonic wave focus position of the head unit is directing to a position of the ink layer so as to eject an ink from the ink layer.
摘要:
A method of manufacturing a semiconductor light emitting device. The method includes: mounting a semiconductor light emitting element on a flat substrate; covering the semiconductor light emitting element on the flat substrate by a cover layer in a domed shape to form a light emitting device, the cover layer including at least a phosphor layer and a coating resin layer that are laminated in order, so as to fill around the semiconductor light emitting element; measuring an emission condition of the light emitting device; and forming a convex lens unit on the outermost of the coating resin layer using a liquid droplet discharging apparatus to adjust an emission distribution of the light emitting device based on the measured emission condition.
摘要:
A method of manufacturing a semiconductor light emitting device. The method includes: mounting a semiconductor light emitting element on a flat substrate; covering the semiconductor light emitting element on the flat substrate by a cover layer in a domed shape to form a light emitting device, the cover layer including at least a phosphor layer and a coating resin layer that are laminated in order, so as to fill around the semiconductor light emitting element; measuring an emission condition of the light emitting device; and forming a convex lens unit on the outermost of the coating resin layer using a liquid droplet discharging apparatus to adjust an emission distribution of the light emitting device based on the measured emission condition.
摘要:
According to one embodiment, there is provided an organic light-emitting diode including an anode and a cathode arranged apart from each other, an emissive layer arranged between the anode and the cathode, a hole injection layer arranged between the anode and the emissive layer and including a polyethylenedioxythiophene, and a hole-transport layer arranged between the hole injection layer and the emissive layer and including a hole-transport material. The emissive layer includes a cathode side first area including a hole transport host material, an electron transport host material and an emitting dopant, and an anode side second area including the hole transport host material and no electron transport host material.
摘要:
According to one embodiment, there is provided an organic light-emitting diode including an anode and a cathode which are arranged apart from each other, an emissive layer arranged between the anode and the cathode including a blue emissive layer located at the anode side and a green and red emissive layer located at the cathode side, the blue emissive layer containing a host material and a blue fluorescent dopant, and the green and red emissive layer containing a host material and a green phosphorescent dopant and/or a red phosphorescent dopant.
摘要:
According to one embodiment, an organic electroluminescent device includes a first electrode, a plurality of second electrodes and an organic light-emitting layer. The first electrode includes a first major surface and is optical transparency. The second electrodes extend in a first direction parallel to the first major surface and are separated from each other in a second direction parallel to the first major surface and perpendicular to the first direction. An optical transmittance of the second electrodes is lower than an optical transmittance of the first electrode. A distance along the second direction between a line extending in the first direction and a side surface of each of the second electrodes continuously increases and decreases along the first direction. The side surface is unparallel to the first major surface. The organic light-emitting layer is provided between the first electrode and the second electrodes.
摘要:
According to one embodiment, an organic EL display includes a substrate and a pixel. The pixel is disposed on the substrate and includes a first color displaying portion and a second color displaying portion. The first color displaying portion has a first organic light emitting layer. The second color displaying portion has a second organic light emitting layer having an emission spectrum different from an emission spectrum of the first organic light emitting layer. The first color displaying portion has two sub-pixels. One of the two sub-pixels has a color filter.
摘要:
According to one embodiment, an organic electroluminescent device includes a transparent electrode, a metal electrode, an organic light emitting layer and an intermediate layer. The transparent electrode is transmissive with respect to visible light. The metal electrode is reflective with respect to the visible light. The organic light emitting layer is provided between the transparent electrode and the metal electrode and is configured to emit light including a wavelength component of the visible light. The intermediate layer contacts the metal electrode and the organic light emitting layer between the organic light emitting layer and the metal electrode and is transmissive with respect to the visible light. A thickness of the intermediate layer is 60 nanometers or more and less than 200 nanometers. A refractive index of the organic light emitting layer to the visible light is higher than a refractive index of the intermediate layer to the visible light.
摘要:
According to one embodiment, an organic electroluminescent device includes first and second electrodes, an interconnection layer, an organic light emitting layer and a light scattering layer. The first electrode has includes first, second and third portions. The interconnection layer is electrically connected to the first electrode. The third portion overlays the interconnection layer when projected to the plane. The first and second portions do not overlay the interconnection layer. The second electrode overlays the second portion and does not overlay the first and the third portions. The organic light emitting layer is provided between the second portion and the second electrode. The second portion is disposed between the fourth portion of the light scattering layer and the second electrode. The fifth portion of the light scattering layer overlays the interconnection layer. The light scattering layer does not overlay the first portion when projected to the plane.