摘要:
The present invention is directed to a system and method for designing efficient multi-channel FBG gratings using a pre-compensated phase mask for diffracting light for side-writing the grating on an optical fiber core. A desired phase function of the FBG is generated, specifically tailored to an effective spacing between the phase mask and the optical fiber core. From the phase function a phase mask is pre-compensated to offset diffraction effects associated with each longitudinal position of the FBG receiving light from two corresponding longitudinal positions of the phase mask substantially symmetrically spaced longitudinally relative to each particular longitudinal position of the FBG. The two corresponding longitudinal positions of the phase mask are spaced longitudinally from each other by a spacing determined by the effective spacing between the phase mask and fiber core and by the first order diffraction angle of light through the phase mask.
摘要:
Techniques for designing efficient gratings with multiple frequency response channels based on sampled patterns based predominantly on phase modulation of the underlying grating structure. Each period of the phase sampled patterns may include contiguous, discrete phase segments with different phase values, or alternatively, a continuous spatial phase pattern that changes the phase of the underlying grating structure. Moderate amplitude modulation of the underlying grating structure by the sampling structure may also be used together with phase modulation. The grating period or the sampling period may be chirped.
摘要:
The invention reduces the effects of stitching errors from re-scaling or re-positioning in the fabrication of fiber Bragg gratings or the mask used in such fabrication. A first embodiment of the invention preferably uses characteristics of stitching errors to compensate for the stitching errors themselves. By increasing the number of stitching errors, errors caused by the stitching errors can be reduced. A second embodiment uses continuous writing of the desired pattern, wherein the desired pattern is snapped to a grid that can be written by the fabrication equipment. Using continuous writing eliminates stitching errors in the resulting gratings.
摘要:
The invention provides masks that form fiber Bragg gratings (FBGs) in optical fibers without stitching errors from re-scaling or re-positioning. The invention feathers the pixels of the mask lines by adding, removing, and/or displacing one or more pixels from the edges of the bars and spaces of the mask. The feathering of pixels will affect the FBG being written into the fiber. The feathering operates to shift the effective edge of the bars. This allows the achievement of much finer resolution FBGs than the pixel size of the mask.
摘要:
A method and apparatus for suppression of four-wave mixing using polarization control with a high power polarization maintaining fiber amplifier system. The apparatus includes a master oscillator (MO) that generates a beam; a polarization controller that receives the beam from the MO and transmits the beam with a desired polarization; a pre-amplifier that receives the beam from the polarization controller, pre-amplifies the beam, and transmits the beam; a high power fiber amplifier that receives the beam from the pre-amplifier, amplifies the beam, and transmits an output beam; and a polarization detector that detects the polarization of the output beam. The polarization detector transmits feedback to the polarization controller to ensure that the output beam components aligned with the principal birefringent axes of the high power fiber amplifier have approximately equal power.
摘要:
A system and method for combining plural low power light beams into a coherent high power light beam by means of a diffractive optical element operating as both a beam combiner and beam sampler. An oscillation source transmits a master signal that is split into plural beams propagating at a common wavelength. Each beam is phase locked by a corresponding phase modulator according to a phase correction signal. The beams are directed through a fiber array to the diffractive optical element to allow efficient coherent combination of the beams at a desired diffraction order. The diffractive optical element includes a periodic sampling grating for diffracting a low power sample beam representative of the combined beam. A phase detection stage detects phases of constituent beams in the sample beam from which the phase correction signals are derived and fed back to the phase modulators. The diffractive optical element may be further modified to collimate beams diverging from the fiber array and to focus the sample beam onto a phase detector.
摘要:
A solid state laser amplifier architecture in which multiple zig-zag slab laser amplifiers (50) are stacked together, side-pumped using a common pump source (52, 54), and cooled with a common cooling system. The stack of zig-zag slabs (50) produces an array of sub-beams (62) that can be combined coherently into a single composite output beam. Variations in pump power absorption through the stack are mitigated by selection of doping levels for the slabs (50). The composite output beam is sufficiently symmetrical to be directed through conventional optics of circular cross section. Multiple stacks may be arranged in a two-dimensional array to obtain even higher output powers.
摘要:
A method and apparatus for suppression of stimulated Brillouin scattering (SBS) includes a master oscillator (MO) that generates a beam; a birefringent element that receives and transmits the beam, wherein the beam is transmitted with a transmission delay between two orthogonal axes; a polarization controller that receives the beam and transmits the beam with a desired polarization; a fiber amplifier that receives the beam, amplifies the beam, and transmits a beam; a compensating birefringent element that receives the beam, approximately removes the transmission delay between the two axes of the beam, and transmits an output beam; and a polarization detector that detects the output beam's polarization and provides feedback to the polarization controller to ensure that the polarization of the output beam is approximately equal to a desired output polarization, so as to reduce SBS.
摘要:
A method for combining beams from multiple laser emitters, which may be optical fibers or bulk amplifiers, to form a composite output beam with desirable beam characteristics, as measured, for example, by Strehl ratio. Beams from the multiple emitters are interferometrically combined in the near field, and the phases of the beams are controlled to provide optimal phase coherence, and thereby to minimize losses. Various techniques are disclosed for controlling the phase angles of the emitted beams, using either a separate phase detector for each emitter beam, or a single detector for the composite output beam, or nulling detectors in spurious outputs from the beam combining optics. All of these techniques achieve an improvement in Strehl, largely because the interferometric combination of beams is independent of the array fill factor.