摘要:
In the system acquisition process system information is non-coherently detected using correlation of reconstructed and received preamble signals, such as the primary broadcast control channel (PBCCH) and the acquisition pilots (TDM1, TDM2, and TDM3). The phase correlation signals between the correlated signals of PBCCH and TDM2 or TDM3 and between the correlated signals of TDM2 and TDM3 are combined to decode other sector interference (OSI) information and the like. Acquisition is also made more efficient by taking advantage of predictable information based on system synchronicity. The sync/async bit is included in at least one of the acquisition pilots. The mobile then uses knowledge of system synchronicity to more efficiently detect the additional information in the superframe preamble.
摘要:
In the system acquisition process system information is non-coherently detected using correlation of reconstructed and received preamble signals, such as the primary broadcast control channel (PBCCH) and the acquisition pilots (TDM1, TDM2, and TDM3). The phase correlation signals between the correlated signals of PBCCH and TDM2 or TDM3 and between the correlated signals of TDM2 and TDM3 are combined to decode other sector interference (OSI) information and the like. Acquisition is also made more efficient by taking advantage of predictable information based on system synchronicity. The sync/async bit is included in at least one of the acquisition pilots. The mobile then uses knowledge of system synchronicity to more efficiently detect the additional information in the superframe preamble.
摘要:
In the system acquisition process system information is non-coherently detected using correlation of reconstructed and received preamble signals, such as the primary broadcast control channel (PBCCH) and the acquisition pilots (TDM1, TDM2, and TDM3). The phase correlation signals between the correlated signals of PBCCH and TDM2 or TDM3 and between the correlated signals of TDM2 and TDM3 are combined to decode other sector interference (OSI) information and the like. Acquisition is also made more efficient by taking advantage of predictable information based on system synchronicity. The sync/async bit is included in at least one of the acquisition pilots. The mobile then uses knowledge of system synchronicity to more efficiently detect the additional information in the superframe preamble.
摘要:
In the system acquisition process system information is non-coherently detected using correlation of reconstructed and received preamble signals, such as the primary broadcast control channel (PBCCH) and the acquisition pilots (TDM1, TDM2, and TDM3). The phase correlation signals between the correlated signals of PBCCH and TDM2 or TDM3 and between the correlated signals of TDM2 and TDM3 are combined to decode other sector interference (OSI) information and the like. Acquisition is also made more efficient by taking advantage of predictable information based on system synchronicity. The sync/async bit is included in at least one of the acquisition pilots. The mobile then uses knowledge of system synchronicity to more efficiently detect the additional information in the superframe preamble.
摘要:
Two types of access probe messages are defined: a first when a mobile station has not yet been assigned a media access code index (MAC ID), and a second when a mobile station already has a MAC ID assigned by the base stations in the active set. Base stations can differentiate between the first and second types of access probes according to the scrambling sequence used. In the second type, while different MAC IDs are used by each of the mobile stations in the sector, they are all scrambled according to a similar scrambling sequence defined specifically for these second types of access probes. The rake receivers used in such networks are configured to repeat the rake finger processing after CP removal, DFT, de-channelizing, and IDFT, thereby reducing their complexity.
摘要:
A method and apparatus of signaling radio resource allocation in a wireless communication system includes transmitting at least one region boundary to a mobile station indicating a division of the time-frequency resources into at least two regions, determining a time-frequency resource assignment for the mobile station, transmitting an indication of the determined time-frequency resource to the mobile station in the same region as the determined time-frequency resource, and transmitting a packet to the mobile station using the physical time-frequency resources corresponding to the determined time-frequency resource.
摘要:
A wireless communications network includes a base station and a number of mobile relay stations. Each mobile relay station within an area of coverage for the base station has associated with it a unique paging group identification value as well as the paging group identification value of the base station.
摘要:
The present invention discloses constructs and methods for transmitting a HARQ re-transmission in an adaptive manner in a wireless communication system. The system of the present invention discloses: scheduling the re-transmission of a data packet, based on decoding results from a receiver; determining a plurality of parameters for re-transmission in an adaptive manner; sending an assignment message if required; using a plurality of fields in the assignment message for re-transmission to indicate the plurality of parameters in the re-transmission; using a MACID field in the assignment message for re-transmission to indicate a target mobile station for the re-transmission; transmitting a data packet for the re-transmission; and decoding the data packet at the receiver to determine if a further need of re-transmission exists.
摘要:
A method and apparatus of signaling radio resource allocation in a wireless communication system includes transmitting at least one region boundary to a mobile station indicating a division of the time-frequency resources into at least two regions, determining a time-frequency resource assignment for the mobile station, transmitting an indication of the determined time-frequency resource to the mobile station in the same region as the determined time-frequency resource, and transmitting a packet to the mobile station using the physical time-frequency resources corresponding to the determined time-frequency resource.
摘要:
A system providing flexible cyclic prefix length in a preamble (i.e., superframe preamble) is disclosed. The preamble comprises a first section and a second section. The first section contains at least one broadcast channel and occupies the first number of OFDM symbols in the preamble. The second section contains acquisition pilots and occupies the remaining number of OFDM symbols in the preamble. A first cyclic prefix length is used in the first section. It is indicated by the first broadcast channel and is unknown to a mobile station before the mobile station decodes the first broadcast channel. The second cyclic prefix length is used in the second section. It is fixed and known to the mobile stations. The first broadcast channel is located at the last OFDM symbol in the first section and is next to the second section in time.