摘要:
[Problems] To provide a method of producing, easily and in a high yield, a reformed aluminum nitride sintered body having very excellent light transmission property which can be favorably used as a light-transmitting cover particularly for light sources having high luminous efficiencies.[Means for Solution] An aluminum nitride sintered body having a concentration of metal impurities excluding aluminum of not more than 150 ppm, an oxygen concentration of not more than 0.5% by weight and a relative density of not less than 95% is used as a starting material. The aluminum nitride sintered body is heat-treated in an oxidizing atmosphere in a temperature region of 1400 to 2000° C. to increase the oxygen concentration by not less than 0.03% by weight.
摘要:
[Problems] To provide a method of producing, easily and in a high yield, a reformed aluminum nitride sintered body having very excellent light transmission property which can be favorably used as a light-transmitting cover particularly for light sources having high luminous efficiencies. [Means for Solution] An aluminum nitride sintered body having a concentration of metal impurities excluding aluminum of not more than 150 ppm, an oxygen concentration of not more than 0.5% by weight and a relative density of not less than 95% is used as a starting material. The aluminum nitride sintered body is heat-treated in an oxidizing atmosphere in a temperature region of 1400 to 2000° C. to increase the oxygen concentration by not less than 0.03% by weight.
摘要:
A cement for bonding an arc tube body made of an aluminum nitride sintered body and an electrode support made of molybdenum achieves high gas tightness in the obtainable arc tube without impairing the excellent translucency of the aluminum nitride sintered body. The cement contains a molybdenum powder and an aluminum nitride powder, and the total amount of metalloid elements, rare-earth elements and metal elements (except the rare-earth elements and aluminum element) corresponding to the following conditions (1) and (2) is 300 ppm or less: (1) metal elements having a melting point of 2000° C. or lower, and (2) metal elements having an ion radius smaller than that of aluminum.
摘要:
A process for producing an aluminum nitride sintered body having improved light transmission properties includes the step of subjecting an ordinary aluminum nitride sintered body to thermal treatment in an inert atmosphere at a temperature of from 1300 to 1400° C. for at least 1 hr. A cover for light sources is produced by the process and includes a hollow aluminum nitride sintered body having a light transmittance in the visible light region of at least 87%, which body is obtainable by thermally treating a hollow aluminum nitride sintered body in an inert atmosphere at a temperature of 1300 to 1400° C. for at least 1 hr.
摘要:
Provided is an aluminum nitride sintered body with high optical transmissivity and which has a smooth surface in the unpolished condition after firing. The aluminum nitride sintered body has an oxygen concentration of 450 ppm or less, a concentration of impurity elements excluding oxygen, nitrogen, and aluminum of 350 ppm or less, and an average crystal grain diameter of between 2 μm and 20 μm, and also has an arithmetic mean surface height Ra of 1 μm or less and a maximum height Rz of 10 μm or less in the unpolished condition after firing.
摘要:
An aluminum nitride sintered body having an oxygen concentration of not larger than 400 ppm, a metal impurity concentration of not larger than 150 ppm, and a carbon concentration of not larger than 200 ppm, and having an average crystal grain size of 2 μm to 20 μm. The sintered body exhibits particularly excellent optical properties such as an inclination of a spectral curve in the wavelength region of 260 to 300 nm of not smaller than 1.0 (%/nm), a light transmission factor of not smaller than 86% in the wavelength region of 400 to 800 nm, and a wavelength of not longer than 400 nm when the light transmission factor reaches 60% in the spectrum.
摘要:
A high-purity aluminum nitride sintered body is provided by efficiently removing oxides contained in a raw material powder in producing an aluminum nitride sintered body and preventing composite oxide produced by reaction of oxides contained in the raw material powder with a sintering aid from remaining in the aluminum nitride sintered body. The above sintered body is achieved by an aluminum nitride sintered body having a concentration of residual oxygen excluding attached oxygen of 350 ppm or less.
摘要:
A high-purity aluminum nitride sintered body is provided by efficiently removing oxides contained in a raw material powder in producing an aluminum nitride sintered body and preventing composite oxide produced by reaction of oxides contained in the raw material powder with a sintering aid from remaining in the aluminum nitride sintered body. The above sintered body is achieved by an aluminum nitride sintered body having a concentration of residual oxygen excluding attached oxygen of 350 ppm or less.
摘要:
An aluminum nitride sintered body having an oxygen concentration of not larger than 400 ppm, a metal impurity concentration of not larger than 150 ppm, and a carbon concentration of not larger than 200 ppm, and having an average crystal grain size of 2 μm to 20 μm. The sintered body exhibits particularly excellent optical properties such as an inclination of a spectral curve in the wavelength region of 260 to 300 nm of not smaller than 1.0 (%/nm), a light transmission factor of not smaller than 86% in the wavelength region of 400 to 800 nm, and a wavelength of not longer than 400 nm when the light transmission factor reaches 60% in the spectrum.
摘要:
Provided is an aluminum nitride sintered body with high optical transmissivity and which has a smooth surface in the unpolished condition after firing. The aluminum nitride sintered body has an oxygen concentration of 450 ppm or less, a concentration of impurity elements excluding oxygen, nitrogen, and aluminum of 350 ppm or less, and an average crystal grain diameter of between 2 μm and 20 μm, and also has an arithmetic mean surface height Ra of 1 μm or less and a maximum height Rz of 10 μm or less in the unpolished condition after firing.