摘要:
A magnet layer or antiferromagnetic thin film layer composed of a thin film serving as a bias magnetic field applying member is provided at both ends of a magnetic thin film having a magneto-impedance effect so that a bias magnetic field Hbi is applied to the magnetic thin film layer in parallel with the direction of application of an external magnetic field Hex to the magnetic thin film layer. As the magnetic thin film layer, a soft magnetic material having the composition ColTamHfn, FehRiOl, (Co1-vTv)xMyOzXw, T100-d-e-f-gXdMeZfQg or T100-p-q-f-gSipAlqMeZfQg is used.
摘要:
In a magnetic film forming method, a plurality of chips formed of Fe.sub.3 O.sub.4 and a plurality of chips formed of HfO.sub.2 are disposed on a target formed of Fe. The composition ratio of a Fe--Hf--O film can be set within a proper range by adjusting the numbers of the up said two kind of chips.
摘要翻译:在磁性膜形成方法中,由Fe 3 O 4形成的多个芯片和由HfO 2形成的多个芯片设置在由Fe形成的靶上。 通过调整上述两种芯片的数量,可以将Fe-Hf-O膜的组成比设定在适当的范围内。
摘要:
The potentiometer of the present invention includes at least a pair of giant magnetoresistive effect elements, in which the giant magnetoresistive effect elements to be paired are formed on a substrate in a state that the elements are connected mutually electrically with the orientations of magnetization axes of the pinned magnetic layers facing 180° opposite each other, and a magnetic coding member is rotatably provided to face the giant magnetoresistive effect elements on the substrate, the magnetic coding member is disposed in such a manner that the center of rotation of the magnetic coding member passes through an intermediate position of the giant magnetoresistive effect elements to be paired, and the magnetic coding member has at least two magnetic poles formed along the direction of rotation of itself.
摘要:
The present invention is characterized in that a first giant magnetoresistive effect element and a second giant magnetoresistive effect element are provided along a first straight line with the magnetization of the pinned magnetic layer c oriented in a fixed direction, and that a third giant magnetoresistive effect element and a fourth giant magnetoresistive effect element are provided along a second straight line, which is parallel to the first straight line, with the magnetization of the pinned magnetic layer oriented 180° opposite to the directions of magnetization of the pinned magnetic layers in the first and second giant magnetoresistive effect elements.
摘要:
A soft magnetic film includes Fe as a major constituent; at least one element M selected from the group consisting of Zr, Hr, V, Nb, Ta, W, Mo, and rare earth elements (excluding Sm); at least one element L selected from the group consisting of Ti, Sn, Sm, and Si: and at least one element R selected from the group consisting of O, C, and N. The film has a structure including a mixture of an amorphous phase containing a large amount of the oxide of the element M and a fine crystalline phase containing a large amount of Fe, and the fine crystalline phase further contains the element L. Thin film magnetic heads, planar magnetic elements, and filters using the soft magnetic film are also disclosed.
摘要:
The encoder of the present invention includes at least a pair of giant magnetoresistive effect elements, in which the giant magnetoresistive effect elements to be paired are formed on a substrate in a state that the elements are connected mutually electrically with the orientations of magnetization axes of the pinned magnetic layers each facing the same direction in parallel, a magnetic coding member is rotatably supported to face the giant magnetoresistive effect elements on the substrate, and the magnetic coding member has a plurality of magnetic poles formed along the direction of rotation of itself.
摘要:
A radiation detection apparatus comprising a sensor panel and a scintillator panel is provided. The scintillator panel including a substrate, a scintillator disposed on the substrate, and a scintillator protective film that has a first organic protective layer and an inorganic protective layer, and covers the scintillator. The scintillator protective film is located between the sensor panel and the scintillator. The first organic protective layer is located on a scintillator side from the inorganic protective layer. A surface on a sensor panel side of the scintillator is partially in contact with the inorganic protective layer.
摘要:
A radiation imaging apparatus includes a sensor which is placed in an internal space in the chassis and detects radiation. The apparatus includes a positioning mechanism which moves the sensor in the internal space to determine a position where radiation is detected, so as to change an area where radiation imaging is performed by detecting radiation using the sensor.
摘要:
A radiation detection apparatus comprising: a sensor panel including a photoelectric conversion region and an electrically conductive pattern that is electrically connected to the photoelectric conversion region; a scintillator layer disposed over the photoelectric conversion region of the sensor panel; a wiring member including a portion overlapping with the electrically conductive pattern and electrically connected to the electrically conductive pattern and; and a protective film covering the scintillator layer and the portion of the wiring member that overlaps with the electrically conductive pattern is provided. A region of the protective film that covers the wiring member includes a portion that is press-bonded to the sensor panel.
摘要:
A radiation detector includes a sensor panel including a photodetector and peripheral circuitry, the photodetector includes a two-dimensional array of photoelectric conversion elements arranged on a substrate, the peripheral circuitry is electrically connected to the photoelectric conversion elements and is disposed on the periphery of the photodetector; a scintillator layer is disposed on the photodetector of the sensor panel, the scintillator layer converts radiation into light that is detectable by the photoelectric conversion elements; a scintillator protection member covers the scintillator layer; and a sealing resin seals the scintillator layer, the sealing resin is disposed between the sensor panel and the scintillator protection member on the periphery of the scintillator layer; the sealing resin is disposed on top of the peripheral circuitry; and particles containing a radiation-absorbing material are dispersed in the sealing resin.