Abstract:
The present invention relates to a decoding apparatus, a decoding method, an encoding apparatus, an encoding method, and programs that can shorten the delay time caused by the band extension at the time of decoding, and restrain increases in resources on the decoding side.A higher frequency component generating unit (73) generates a pseudo higher frequency spectrum by using a lower frequency spectrum (SP-L) and a higher frequency envelope (ENV-H). A phase randomizing unit (74) randomizes the phase of the pseudo higher frequency spectrum, based on a random flag (RND). An inverse MDCT unit (75) denormalizes the lower frequency spectrum (SP-L) by using a lower frequency envelope (ENV-L), and combines the pseudo higher frequency spectrum supplied from the phase randomizing unit (74) with the denormalized lower frequency spectrum (SP-L). The combination result is used as the spectrum of the entire band. The present invention can be applied to a decoding apparatus that performs band extension decoding, for example.
Abstract:
A decoding device includes an acquisition unit configured to acquire a first frequency signal including a narrowband signal and a wideband signal, a direct inverse orthogonal transform unit configured to perform a direct matrix operation with respect to the narrowband signal of the first frequency signal so as to perform inverse orthogonal transform, and a high-speed inverse orthogonal transform unit configured to perform inverse orthogonal transform employing a high-speed operation method with respect to the wideband signal of the first frequency signal.
Abstract:
The power converter for solving the above-described problem has a module section and a drive section for operating the module section. The drive section has a drive circuit. The drive circuit is provided so as to correspond to the first semiconductor element which is one of the semiconductor elements comprising the parallel circuit; wherein drive signals for operating the first semiconductor element are output. The drive signals that are output from the drive circuit are electrically branched and output to a second semiconductor element which is a separate semiconductor element from the first semiconductor element of the semiconductor elements comprising the parallel circuit. As a result, the second semiconductor element receives the branched drive signals and operates in the same manner as the first semiconductor element.Thereby, a motor converter favorable for control large current at a low cost is provided.
Abstract:
The present invention provides a vehicle driving apparatus capable of being mounted easily even in a narrow space such as under-floor of the vehicle. The vehicle driving apparatus comprises a first and a second generators driven by an engine for driving front wheels, and a motor driven by receiving a power supply from the second generator to drive rear wheels, the first and second generators being installed in the vicinity of an engine within an engine room, the motor being arranged in the vicinity of a differential gear with which a reduction mechanism is integrated and is positioned substantially in a central part of the rear wheels.
Abstract:
The present invention provides a vehicle driving apparatus capable of being mounted easily even in a narrow space such as under-floor of the vehicle. The vehicle driving apparatus comprises a first and a second generators driven by an engine for driving front wheels, and a motor driven by receiving a power supply from the second generator to drive rear wheels, the first and second generators being installed in the vicinity of an engine within an engine room, the motor being arranged in the vicinity of a differential gear with which a reduction mechanism is integrated and is positioned substantially in a central part of the rear wheels.
Abstract:
A control device for a battery charging AC generator for a motor vehicle including a power transistor connected in series with a field winding of the AC generator for performing switching control of a current flowing through the field winding. A voltage deviation circuit detects a deviation of the battery voltage from a reference voltage; and a PWM signal generating circuit is responsive to a voltage deviation signal from the voltage deviation circuit for turning the power transister on and off a resistor connected in series with the power transistor detects a current flowing through the field winding; and a current limiting circuit generates a turn off signal for the power transistor when the detected current is determined to have exceeded a reference current. A latch circuit operates in response to a clock signal from the PWM signal generating circuit to limit the frequency of turning on and off of the power transistor to below 1 KHz.
Abstract:
There is provided an audio encoder comprising a determination part determining, based on frequency spectra of audio signals of a plurality of channels, a mixing ratio as a ratio, relative to a frequency spectrum after mixing for each channel of the plurality of channels, of the frequency spectrum for another channel, a mixing part mixing the frequency spectra of the plurality of channels for each channel based on the mixing ratio determined by the determination part, and an encoding part encoding the frequency spectra of the plurality of channels after mixing by the mixing part.
Abstract:
An encoding apparatus includes a time-frequency transform unit that performs a time-frequency transform on an audio signal, a normalization unit that normalizes a frequency spectral coefficient obtained by the time-frequency transform in order to generate encoded data of the audio signal, a level calculation unit that calculates a level of the audio signal, a scale factor changing unit that changes a concealment scale factor included in encoded concealment data obtained by performing, on the basis of the level of the audio signal, a time-frequency transform and normalization on a minute noise signal, the concealment scale factor being a scale factor relating to a coefficient used for the normalization, and an output unit that outputs the encoded data of the audio signal generated by the normalization unit or outputs, as encoded data of the audio signal, the encoded concealment data whose concealment scale factor has been changed.
Abstract:
Provided is an encoding apparatus including: a determination unit which determines bit allocation at the time of quantizing a data signal based on normalization information of the data signal so that a data length as a result of fixed length encoding of the quantized data signal becomes close to a second data length which is equal to or larger than a first data length allocated to a result of variable length encoding of the quantized data signal; a quantizer which quantizes the data signal based on the bit allocation; and an encoder which performs variable length encoding on the quantized data signal, wherein the determination unit updates the second data length so that a difference between a data length of the variable-length-encoded data signal and the first data length is within a predetermined range.
Abstract:
There is provided an audio encoder comprising a determination part determining, based on frequency spectra of audio signals of a plurality of channels, a mixing ratio as a ratio, relative to a frequency spectrum after mixing for each channel of the plurality of channels, of the frequency spectrum for another channel, a mixing part mixing the frequency spectra of the plurality of channels for each channel based on the mixing ratio determined by the determination part, and an encoding part encoding the frequency spectra of the plurality of channels after mixing by the mixing part.