Abstract:
A sheet conveying device, which is included in an image forming apparatus, includes first and second sheet conveying bodies to contact each other, a cover to move relative to an apparatus body of the image forming apparatus, and a connecting body to connect the cover and the second sheet conveying body. The second sheet conveying body separates from the first sheet conveying body along with an opening movement of the cover. The connecting body includes a first connecting portion connected to the cover and a second connecting portion connected to the second sheet conveying body. At least one of a connection with the cover and a connection with the second sheet conveying body is released when the cover is closed. The connecting body is brought into connection with the cover or the second sheet conveying body.
Abstract:
An image forming apparatus includes an image bearer, an image forming unit, an intermediate transfer member, a secondary transfer member, an image detector, a computing device, and a conveyor device. The computing device calculates a traveling speed of the intermediate transfer member based on detection information provided by the image detector. The conveyor device continuously transports to a secondary transfer portion a plurality of recording media one by one at a predetermined interval between successive recording media. The image forming unit forms a test image at a space between successive recording-medium contact regions of the intermediate transfer member at which the recording medium contacts the intermediate transfer member. A travel distance of the intermediate transfer member from the detection position on the intermediate transfer member to the secondary transfer portion in a traveling direction thereof is shorter than the space between the successive recording-medium contact regions.
Abstract:
A sheet conveying device includes conveyance passage forming bodies to define a sheet conveyance passage, a nip forming body to form a conveying nip region in the sheet conveyance passage, and a flexible plate body having a support portion to be attached to another body and having a downstream-side end portion as a free end in a sheet conveying direction. The support portion of the flexible plate body is located on an upstream side in the sheet conveying direction with respect to the conveying nip region. The free end being located on a downstream side in the sheet conveying direction with respect to the conveying nip region.
Abstract:
A drive transmission device, which is included in an image forming apparatus, includes a drive transmission body to which a drive force is applied from a driving source, and a rotary shaft having a press-in portion mounted on one end thereof in the axial direction. The press-in portion has multiple planes disposed parallel to an axial direction and configured to receive the drive transmission body. The multiple planes include upstream and downstream side planes disposed downstream from the upstream side plane in a press-in direction of the drive transmission body. The upstream and downstream side planes are aligned along the press-in direction of the drive transmission body and have respective distances different from each other from an axial center of the rotary shaft. A distance from the downstream side plane to the axial center is greater than a distance from the upstream side plane to the axial center.
Abstract:
A drive transmission device includes a drive transmission member and a rotation shaft. The drive transmission member has an insertion portion. The rotation shaft includes a press-fit portion and another flat portion. The press-fit portion press-fits into the insertion portion after insertion of an axial tip of the rotation shaft into the insertion portion and includes a press-fit flat portion parallel to an axial direction of the rotation shaft. The other flat portion is at a position closer to the axial tip than the press-fit flat portion. The insertion portion has an inner-wall flat portion to contact the press-fit flat portion when the press-fit portion is press-fitted into the insertion portion. The other flat portion is parallel to the press-fit flat portion that has a distance from an axial center of the rotation shaft smaller than the press-fit flat portion.
Abstract:
An image forming apparatus includes an image bearer, an image forming unit, an intermediate transfer member, a secondary transfer member, an image detector, a computing device, and a conveyor device. The computing device calculates a traveling speed of the intermediate transfer member based on detection information provided by the image detector. The conveyor device continuously transports to a secondary transfer portion a plurality of recording media one by one at a predetermined interval between successive recording media. The image forming unit forms a test image at a space between successive recording-medium contact regions of the intermediate transfer member at which the recording medium contacts the intermediate transfer member. A travel distance of the intermediate transfer member from the detection position on the intermediate transfer member to the secondary transfer portion in a traveling direction thereof is shorter than the space between the successive recording-medium contact regions.
Abstract:
A positioning device to position a first member relative to a second member includes two convex parts disposed on a side of the first member and apart from each other; and positioning portions disposed on a side of the second member so as to contact the convex parts, each of which is disposed apart from each other and opposed to the two convex parts. The positioning portions includes two planar portions disposed substantially perpendicularly relative to a direction to allow the first member to approach the second member; and a slanted portion disposed in the vicinity of one of the two planar portions and angled with respect to a direction to allow the first member to approach the second member. The second member is an endless belt, on which an image pattern for detection is formed, and the first member is a sensor to detect the image pattern formed on the endless belt.
Abstract:
A sheet conveying device includes a pair of rollers, a biasing member, a guide member, a biasing support, and a biasing force changer. The pair of rollers includes a first roller and a second roller disposed in contact with the first roller. The pair of rollers is configured to hold a sheet between the first roller and the second roller. The biasing member is configured to bias the first roller toward the second roller. The biasing support is configured to support the biasing member and has a guide target member configured to slide along the guide member to move the biasing support. The biasing force changer is configured to change a biasing force of the biasing member along with movement of the biasing support. The guide target member has a portion projecting into a sheet conveyance passage through which the sheet is conveyed by the pair of rollers.
Abstract:
A sheet conveying device includes a pair of rollers including a first roller and a second roller to hold a sheet conveyed between the first and second rollers; a biasing member to bias the first roller toward the second roller; a biasing force changer to change a biasing force of the biasing member; control circuitry to, when a predetermined changing condition is met, cause the changer to change the biasing force and cause the rollers to convey the sheet; an operation detector to detect a changing operation of the changer; and a notification device to notify an abnormality of the changing operation when the operation detector detects the abnormality. When the operation detector detects the abnormality, the control circuitry performs sheet conveyance control to cause the rollers to convey the sheet without causing the changer to change the biasing force, regardless of whether the predetermined changing condition is met.
Abstract:
A moving device assembly includes a moving device and a shield. The moving device is movable between a first position and a second position, to move a detector including a detection surface relative to an opposing member disposed opposite the detector. The shield shields the detection surface of the detector. As the moving device is at the first position, the detector is at a proximal position at which the detector is near the opposing member, and as the moving device is at the second position, the detector is at a shield position at which the detector is separated from the opposing member and the detection surface of the detector is shielded by the shield.