摘要:
Activation of an external sensor coupled to an electronic device will change the frequency of a low power oscillator in the electronic device that runs during a low power sleep mode of the electronic device. When a change in frequency of the low power oscillator is detected, the electronic device will wake-up from the low power sleep mode. In addition, when a change in frequency from an external frequency source is detected, the electronic device will wake-up from the low power sleep mode.
摘要:
Activation of an external sensor coupled to an electronic device will change the frequency of a low power oscillator in the electronic device that runs during a low power sleep mode of the electronic device. When a change in frequency of the low power oscillator is detected, the electronic device will wake-up from the low power sleep mode. In addition, when a change in frequency from an external frequency source is detected, the electronic device will wake-up from the low power sleep mode.
摘要:
Activation of an external sensor coupled to an electronic device will change the frequency of a low power oscillator in the electronic device that runs during a low power sleep mode of the electronic device. When a change in frequency of the low power oscillator is detected, the electronic device will wake-up from the low power sleep mode. In addition, when a change in frequency from an external frequency source is detected, the electronic device will wake-up from the low power sleep mode.
摘要:
Activation of an external sensor coupled to an electronic device will change the frequency of a low power oscillator in the electronic device that runs during a low power sleep mode of the electronic device. When a change in frequency of the low power oscillator is detected, the electronic device will wake-up from the low power sleep mode. In addition, when a change in frequency from an external frequency source is detected, the electronic device will wake-up from the low power sleep mode.
摘要:
Activation of an external sensor coupled to an electronic device will change the frequency of a low power oscillator in the electronic device that runs during a low power sleep mode of the electronic device. When a change in frequency of the low power oscillator is detected, the electronic device will wake-up from the low power sleep mode. In addition, when a change in frequency from an external frequency source is detected, the electronic device will wake-up from the low power sleep mode.
摘要:
Activation of an external sensor coupled to an electronic device will change the frequency of a low power oscillator in the electronic device that runs during a low power sleep mode of the electronic device. When a change in frequency of the low power oscillator is detected, the electronic device will wake-up from the low power sleep mode. In addition, when a change in frequency from an external frequency source is detected, the electronic device will wake-up from the low power sleep mode.
摘要:
Activation of an external sensor coupled to an electronic device will change the frequency of a low power oscillator in the electronic device that runs during a low power sleep mode of the electronic device. When a change in frequency of the low power oscillator is detected, the electronic device will wake-up from the low power sleep mode. In addition, when a change in frequency from an external frequency source is detected, the electronic device will wake-up from the low power sleep mode.
摘要:
Activation of an external sensor coupled to an electronic device will change the frequency of a low power oscillator in the electronic device that runs during a low power sleep mode of the electronic device. When a change in frequency of the low power oscillator is detected, the electronic device will wake-up from the low power sleep mode. In addition, when a change in frequency from an external frequency source is detected, the electronic device will wake-up from the low power sleep mode.
摘要:
An n-bit microprocessor device has an n-bit central processing unit (CPU); a plurality of special function registers and general purpose registers which are memory-mapped to a plurality of banks, with at least two 16-bit indirect memory address registers which are accessible by the CPU across all banks; a bank access unit for coupling the CPU with one of the plurality of banks; a data memory coupled with the CPU; and a program memory coupled with the CPU, wherein the indirect address registers are operable to access the data memory or program memory and wherein a bit in each of the indirect memory address registers indicates an access to the data memory or to the program memory.
摘要:
A microcontroller device has a central processing unit (CPU); a data memory coupled with the CPU divided into a plurality of memory banks, a plurality of special function registers and general purpose registers which may be memory-mapped, wherein at least the following special function registers are memory-mapped to all memory banks: a status register, a bank select register, a plurality of indirect memory address registers, a working register, and a program counter high latch; and wherein upon occurrence of a context switch, the CPU is operable to automatically save the content of the status register, the bank select register, the plurality of indirect memory address registers, the working register, and the program counter high latch, and upon return from the context switch restores the content of the status register, the bank select register, the plurality of indirect memory address registers, the working register, and the program counter high latch.