摘要:
In one embodiment of this invention, a light fixture comprises a light source, a collimating element, an optical cavity and a multi-functional non-imaging optical component (MNOC) comprising an anisotropic light scattering film. In another embodiment of this invention, the MNOC further comprises a surface relief feature which redirects a portion of the incident light. The present invention provides a system and method of controlling the output of light from a light fixture. One or more volumetric anisotropic diffusing components are utilized to control both the photometric distribution and visual appearance of the light fixture. A high degree of optical control is obtained with durable components that can be easily customized to optimize optical performance in light fixtures designed as pendants, wall sconces, wallwashers, downlights, and tasklights. The luminance and color uniformity as well as the illuminance and color uniformity of illumination can be controlled and improved.
摘要:
The present invention provides a polarization-sensitive light homogenizer and a backlight and display using the same. The homogenizer improves the spatial luminance and color uniformity, increases the luminance in a direction normal to the homogenizer and provides increased luminance through polarized light recycling within the light homogenizer and backlight. In one embodiment, the homogenizer includes a polarization-sensitive anisotropic light-scattering (PDALS) region, a non-polarization-sensitive anisotropic light-scattering region, and a substantially non-scattering region. In a further embodiment, the non-scattering region is birefringent. The spatially non-uniform incident light flux from a backlight including one or more non-extended light emitting sources is scattered efficiently by the NPDASL region and is incident on the PDALS region which backscatters light orthogonal to the polarization state desired for efficient illumination of a liquid crystal display panel. The NPDASL and the PDALS form a multiple reflection cavity that will increase the spatial luminance while improving the light recycling of the appropriate polarization state. In a further embodiment the light homogenizer includes at least one of a light collimating region and a light re-directing region.
摘要:
An enhanced light fixture containing a volumetric diffuser to control the spatial luminance uniformity and angular spread of light from the light fixture is disclosed. The volumetric diffuser provides increased spatial luminance uniformity and efficient control over the illuminance such that power reductions, reduced cost or reduced size may be achieved. The volumetric diffuser contains one or more regions of volumetric light scattering particles. The spread of illumination of light from a light emitting source can be efficiently controlled by using a thin, low cost, volumetric, diffuser to direct the light in the desired direction. This allows the reduction in number of light sources, a reduction in power requirements, or a more tailored illumination. When the volumetric diffuser is used in combination with a waveguide to extract light, the light is efficiently coupled out of the waveguide in a thin, planar surface. This transmissive diffuser can be coupled to a reflecting element such that the resulting combination is a light reflecting element with a desired light scattering profile.
摘要:
In one embodiment of this invention, a lightguide comprises a low refractive index region disposed between light extracting region and a non-scattering region. In further embodiment of this invention, volumetric scattering lightguide comprises a low refractive index region disposed between a volumetric scattering region and a non-scattering region. In some embodiments, a light emitting device comprising a volumetric scattering lightguide can angularly filter light input into the edge of a volumetric scattering lightguide by controlling the refractive index of the low refractive index region relative to the refractive index of the non-scattering region to prevent direct illumination of the volumetric scattering region, provide a luminance uniformity greater than 70%, or improve the angular luminous intensity of the light emitting device. The volumetric scattering lightguide may be curved, tapered, and a light emitting device comprising the same may further comprise at least one light source and a light redirecting element.
摘要:
The present invention provides improved light diffusing plates and films that can be used in backlights to increase brightness, provide more control over the viewing angle, reduce thickness and the reduce the overall display cost. By using a volumetric, asymmetric scattering region within a diffuser plate or film, light can be preferentially scattered more in one direction than the other direction. In backlights where the illumination light sources are substantially linear arrays, a diffuser plate or film that scatters predominantly in the direction perpendicular to the linear array will have more efficient forward light throughput than one that scatters light in a symmetric light scattering profile. In addition, a light re-directing region such as an asymmetric scattering region can efficiently allow a light-emitting device to be direct lit and edge lit, simultaneously.
摘要:
The present invention provides improved optical elements, such as light diffusing films, plates, and lenses, which can be used in light-emitting devices, such as light fixtures to control the distribution of light projected onto illuminated objects, such as walls, sculptures, and landscaping. Compared to traditional light scattering films, plates or lenses, improvements in illuminance uniformity, optical throw, system efficacy, and aesthetic appearance are achieved. Embodiments of the invention utilize region(s) of volumetric asymmetric diffusion that allow a partial quantity of light to be transmitted without significant scattering in order to improve optical throw and illuminance uniformity. Embodiments can also eliminate hotspot and thus improve the illuminated uniformity.
摘要:
In one aspect, a device with dynamic optical properties comprises a fluid transfer component comprising a polymer film with one or more layers; an active region of the fluid transfer component comprising a plurality of fluid channels defined by one or more interior surfaces within the polymeric film. In one embodiment, each fluid channel comprises at least 1 row of fluid channels in a thickness direction of the polymeric film. Each fluid channel comprises a first fluid with a first optical property and the active region has a first optical state, and when the a flow source generates fluid flow for a second fluid with a second optical property different from the first optical property to flow through the fluid channels in the active region, the optical state of the active region changes from a first optical state to a second optical state different from the first optical state.
摘要:
A radio-frequency (RF) remote control (10) has a user interface and transmits an RF signal (11) which designates a device (14) to be controlled and a command for that device. The RF signal is received by an intermediary device (12). The intermediary device, in turn, generates and broadcasts a plurality of high-power IR signals (13A-13F). These signals may be received directly by a controlled device (14A) or may be received indirectly by a controlled device (14B, 14C) after one or more reflections from objects (16A, 16B) and/or room surfaces (18). Thus, reliable control of the devices (14) is obtained even in situations where merely transmitting a typical IR signal may not provide reliable control of the device (14).
摘要:
In embodiments of this invention, light emitting devices comprise film-based lightguides comprising at least one light input coupler and an array of coupling lightguides that are folded or bent and disposed substantially above one another. The edges of the coupling lightguides may form part of a light input surface. The light emitting device may comprise more than one light input coupler and the film may be less than 500 microns in thickness. In embodiments of this invention, methods of manufacturing lightguides and light input couplers comprise steps that translate linear fold regions of the coupling lightguides relative to each other such that the coupling lightguides are bent or folded above each other. In other embodiments of this invention, an electroluminescent sign, light fixture, frontlight for a reflective display, or a backlight for a transmissive display comprises a lightguide and light input coupler comprising coupling lightguides.
摘要:
In one aspect, the present invention provides light emitting devices, including light fixtures and luminaires. In some embodiments, a light emitting device comprises at least one light source, a lightguide operable to receive light from the at least one light source at a first location on the lightguide, at least one light extraction region optically coupled to the lightguide and a substantially non-scattering region along a portion of the lightguide.