摘要:
Thermoelectric materials with high figures of merit, ZT values, are disclosed. In many instances, such materials include nano-sized domains (e.g., nanocrystalline), which are hypothesized to help increase the ZT value of the material (e.g., by increasing phonon scattering due to interfaces at grain boundaries or grain/inclusion boundaries). The ZT value of such materials can be greater than about 1, 1.2, 1.4, 1.5, 1.8, 2 and even higher. Such materials can be manufactured from a thermoelectric starting material by generating nanoparticles therefrom, or mechanically alloyed nanoparticles from elements which can be subsequently consolidated (e.g., via direct current induced hot press) into a new bulk material. Non-limiting examples of starting materials include bismuth, lead, and/or silicon-based materials, which can be alloyed, elemental, and/or doped. Various compositions and methods relating to aspects of nanostructured thermoelectric materials (e.g., modulation doping) are further disclosed.
摘要:
Thermoelectric materials with high figures of merit, ZT values, are disclosed. In many instances, such materials include nano-sized domains (e.g., nanocrystalline), which are hypothesized to help increase the ZT value of the material (e.g., by increasing phonon scattering due to interfaces at grain boundaries or grain/inclusion boundaries). The ZT value of such materials can be greater than about 1, 1.2, 1.4, 1.5, 1.8, 2 and even higher. Such materials can be manufactured from a thermoelectric starting material by generating nanoparticles therefrom, or mechanically alloyed nanoparticles from elements which can be subsequently consolidated (e.g., via direct current induced hot press) into a new bulk material. Non-limiting examples of starting materials include bismuth, lead, and/or silicon-based materials, which can be alloyed, elemental, and/or doped. Various compositions and methods relating to aspects of nanostructured thermoelectric materials (e.g., modulation doping) are further disclosed.
摘要:
Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.
摘要:
Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.
摘要:
Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermo-electric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.