System and method for fast 3-dimensional data fusion
    2.
    发明申请
    System and method for fast 3-dimensional data fusion 失效
    快速3维数据融合的系统和方法

    公开(公告)号:US20060256111A1

    公开(公告)日:2006-11-16

    申请号:US11348131

    申请日:2006-02-06

    IPC分类号: G06T17/00

    CPC分类号: G06T15/08

    摘要: A method of volume rendering two digital images includes providing a volume-rendering computing sub-system, loading a first image volume into a memory of the volume-rendering sub-system, rendering the first image volume, wherein a 2-dimensional image is output into an image buffer and a set of depth values are output into a depth buffer, loading a second image volume into a memory of the volume-rendering sub-system, rendering the second image volume up to the depth values output from the first image volume, wherein values from the rendering of the second image volume are merged with non-zero values of the image buffer, and rendering the remainder of the second image volume to include second image volume points beyond the depth values output from the rendering of the first image volume, wherein values from the rendering of the remainder of the second image volume are merged with non-zero values of the image buffer.

    摘要翻译: 一种体绘制两个数字图像的方法包括:提供体积渲染计算子系统,将第一图像体积加载到体绘制子系统的存储器中,呈现第一图像体积,其中输出二维图像 将图像缓冲器和一组深度值输出到深度缓冲器中,将第二图像体积加载到体绘制子系统的存储器中,使第二图像体积达到从第一图像体积输出的深度值 ,其中来自所述第二图像体积的呈现的值与所述图像缓冲器的非零值合并,并且使所述第二图像体积的剩余部分包括超过从所述第一图像的呈现输出的深度值的第二图像体积点 体积,其中来自第二图像体积的剩余部分的渲染的值与图像缓冲器的非零值合并。

    Dynamic image reconstruction with tight frame learning
    3.
    发明授权
    Dynamic image reconstruction with tight frame learning 有权
    动态图像重建与紧帧学习

    公开(公告)号:US09453895B2

    公开(公告)日:2016-09-27

    申请号:US14027451

    申请日:2013-09-16

    IPC分类号: G01R33/48 G06T5/50 G01R33/561

    摘要: A computer-implemented method for learning a tight frame includes acquiring undersampled k-space data over a time period using an interleaved process. An average of the undersampled k-space data is determined and a reference image is generated based on the average of the undersampled k-space data. Next, a tight frame operator is determined based on the reference image. Then, a reconstructed image data is generated from the undersampled k-space data via a sparse reconstruction which utilizes the tight frame operator.

    摘要翻译: 用于学习紧帧的计算机实现的方法包括使用交错处理在一段时间内获取欠采样的k空间数据。 确定欠采样的k空间数据的平均值,并且基于欠采样的k空间数据的平均值生成参考图像。 接下来,基于参考图像确定紧帧运算符。 然后,通过使用紧帧运算符的稀疏重构,从欠采样的k空间数据生成重建的图像数据。

    Dynamic Image Reconstruction with Tight Frame Learning
    4.
    发明申请
    Dynamic Image Reconstruction with Tight Frame Learning 有权
    动态图像重建与紧帧学习

    公开(公告)号:US20140097845A1

    公开(公告)日:2014-04-10

    申请号:US14027451

    申请日:2013-09-16

    IPC分类号: G01R33/48 G06T5/50

    摘要: A computer-implemented method for learning a tight frame includes acquiring undersampled k-space data over a time period using an interleaved process. An average of the undersampled k-space data is determined and a reference image is generated based on the average of the undersampled k-space data. Next, a tight frame operator is determined based on the reference image. Then, a reconstructed image data is generated from the undersampled k-space data via a sparse reconstruction which utilizes the tight frame operator.

    摘要翻译: 用于学习紧帧的计算机实现的方法包括使用交错处理在一段时间内获取欠采样的k空间数据。 确定欠采样的k空间数据的平均值,并且基于欠采样的k空间数据的平均值生成参考图像。 接下来,基于参考图像确定紧帧运算符。 然后,通过使用紧帧运算符的稀疏重构,从欠采样的k空间数据生成重建的图像数据。

    Alternating direction of multipliers method for parallel MRI reconstruction
    5.
    发明授权
    Alternating direction of multipliers method for parallel MRI reconstruction 有权
    并行MRI重建的乘法方法的交替方向

    公开(公告)号:US08879811B2

    公开(公告)日:2014-11-04

    申请号:US13778446

    申请日:2013-02-27

    CPC分类号: G06T11/003 G01R33/5611

    摘要: A method for reconstructing parallel magnetic resonance images includes providing a set of acquired k-space MR image data y, and finding a target MR image x that minimizes ½∥Fv−y∥22+λ∥z∥1 where v=Sx and z=Wx where S is a diagonal matrix containing sensitivity maps of coil elements in an MR receiver array, F is an FFT matrix, W is a redundant Haar wavelet matrix, and λ≧0 is a regularization parameter, by updating x k + 1 = ( μ 1 ⁢ I + μ 3 ⁢ S H ⁢ S ) - 1 ⁡ [ μ 1 ⁢ W H ⁡ ( z k - b z k ) + μ 3 ⁢ S H ⁡ ( v k - b v k ) ] , ⁢ z k + 1 = soft ⁡ ( Wx k + 1 + b z k , 1 μ 1 ) ⁢ ⁢ where soft ⁡ ( x , T ) = { x + T if ⁢ ⁢ x ≤ - T , 0 if ⁢ ⁢  x  ≤ T , x - T if ⁢ ⁢ x ≥ T , ⁢ ⁢ and ⁢ ⁢ v k + 1 = ( F H ⁢ F + μ 3 ⁢ I ) - 1 ⁡ [ F H ⁢ y + μ 3 ⁡ ( Sx k + 1 + b v k ) ] , where k is an iteration counter, μ1 and μ3 are parameters of an augmented Lagrangian function, and bz and bv are dual variables of the augmented Lagrangian.

    摘要翻译: 重建并行磁共振图像的方法包括提供一组获取的k空间MR图像数据y,并找到最小化½|Fv-y‖22+λ‖z‖1的目标MR图像x,其中v = Sx和z = Wx其中S是包含MR接收机阵列中的线圈元件的灵敏度映射的对角矩阵,F是FFT矩阵,W是冗余Haar小波矩阵,并且λ≥0是正则化参数,通过更新xk + 1 =( μ1 I +μ3 SH S) - 1⁡[μ1 WH⁡(zk-bzk)+μ3 SH⁡(vk-bvk)],zk + 1 =软⁡(Wx k + 1 + bzk,1μ1),其中软⁡(x,T)= {x + T,如果üx≤-T,0如果üx≤T,x-T,如果üx≥T ,υ,υνvk + 1 =(FH F +μ3 I)-1 [FH y +μ3⁡(Sx k + 1 + bvk)],其中k是迭代计数器,μ1和 μ3是增强拉格朗日函数的参数,bz和bv是增强拉格朗日的双变量。

    Systems, devices, and methods for diffusion tractography
    7.
    发明申请
    Systems, devices, and methods for diffusion tractography 有权
    用于扩散造影的系统,装置和方法

    公开(公告)号:US20060229856A1

    公开(公告)日:2006-10-12

    申请号:US11398189

    申请日:2006-04-05

    IPC分类号: G06G7/48 G06G7/58

    摘要: Certain exemplary embodiments comprise a method, which can comprise automatically causing a representation of body tissue to be rendered. The body tissue can be tracked via clusters. The clusters each can comprise a predetermined number of particles. Each particle of a particular cluster can be representative of a discreet path associated with the particular cluster in a tensor field.

    摘要翻译: 某些示例性实施例包括一种方法,其可以包括自动地使呈现身体组织的表示。 身体组织可以通过簇跟踪。 簇可以包括预定数量的颗粒。 特定簇的每个粒子可以代表与张量场中的特定簇相关联的谨慎路径。

    ALTERNATING DIRECTION OF MULTIPLIERS METHOD FOR PARALLEL MRI RECONSTRUCTION
    8.
    发明申请
    ALTERNATING DIRECTION OF MULTIPLIERS METHOD FOR PARALLEL MRI RECONSTRUCTION 有权
    并行MRI重建方法的替代方法

    公开(公告)号:US20130259343A1

    公开(公告)日:2013-10-03

    申请号:US13778446

    申请日:2013-02-27

    IPC分类号: G06T11/00

    CPC分类号: G06T11/003 G01R33/5611

    摘要: A method for reconstructing parallel magnetic resonance images includes providing a set of acquired k-space MR image data y, and finding a target MR image x that minimizes ½∥Fv−y∥22+λ∥z∥1 where v=Sx and z=Wx where S is a diagonal matrix containing sensitivity maps of coil elements in an MR receiver array, F is an FFT matrix, W is a redundant Haar wavelet matrix, and λ≧0 is a regularization parameter, by updating x k + 1 = ( μ 1  I + μ 3  S H  S ) - 1  [ μ 1  W H  ( z k - b z k ) + μ 3  S H  ( v k - b v k ) ] ,  z k + 1 = soft  ( Wx k + 1  b z k , 1 μ 1 )   where soft  ( x , T ) = { x + T if   x ≤ - T , 0 if    x  ≤ T , x - T if   x ≥ T ,   and   v k + 1 = ( F H  F + μ 3  I ) - 1  [ F H  y + μ 3  ( Sx k + 1 + b v k ) ] , where k is an iteration counter, μ1 and μ3 are parameters of an augmented Lagrangian function, and bz and bv are dual variables of the augmented Lagrangian.

    摘要翻译: 重建并行磁共振图像的方法包括提供一组获取的k空间MR图像数据y,并找到最小化½|Fv-y‖22+λ‖z‖1的目标MR图像x,其中v = Sx和z = Wx其中S是包含MR接收器阵列中的线圈元件的灵敏度映射的对角矩阵,F是FFT矩阵,W是冗余Haar小波矩阵,并且λ> = 0是正则化参数,通过更新xk + 1 = (μ1 I +μ3 SH SH) - 1(zk-bzk)+ mu 3 SH(vk-bvk)],zk + 1 =软(Wx k + 1,bzk,1 mu 1)其中软(x,T)= {x + T如果x x = = T,如果x<= T,x - 其中k是迭代,其中k是迭代,其中k是迭代,其中k是迭代,其中k是迭代 计数器,mu1和mu3是增强的拉格朗日函数的参数,bz和bv是增强的拉格朗日的双重变量 ianㄧ。

    Prioritized image visualization from scalable compressed data
    9.
    发明申请
    Prioritized image visualization from scalable compressed data 有权
    可扩展压缩数据的优先图像可视化

    公开(公告)号:US20060031372A1

    公开(公告)日:2006-02-09

    申请号:US11057977

    申请日:2005-02-15

    IPC分类号: G06F15/16

    CPC分类号: H04L69/04

    摘要: A system and method for prioritized transmission of scalable compressed data are provided, the system including a database server for receiving an interactive prioritization request from a client and prioritizing transmission of the compressed data relative to a bin optimization in response to the interactive prioritization request; and the method including receiving an interactive prioritization request from a client, prioritizing transmission of the compressed data relative to the bin optimization in response to the interactive prioritization request and transmitting the prioritized compressed data to the client.

    摘要翻译: 提供了一种用于优先传输可伸缩压缩数据的系统和方法,该系统包括数据库服务器,用于从客户端接收交互式优先化请求,并响应于交互优先化请求,优先考虑压缩数据相对于仓优化的传输; 并且所述方法包括从客户端接收交互优先化请求,响应于所述交互优先化请求,将所述压缩数据相对于所述箱优化进行优先级排序,并将优先排序的压缩数据发送给所述客户端。