Abstract:
A method and system for operating a hand-held computer system for navigation. Embodiments of the present invention includes novel improvements to a navigation method and implementation through a device, which can include inertial and/or magnetic field sensors integrated within a hand held device. The method can include using a single-fix method or a dual-fix method. The single fix method includes monitoring travel distance or time for a pre-specified condition and updating the heading from a dead reckoning process based on a first position fix by using a map. The dual-fix method includes obtaining a second position fix and updating the heading based on the difference in displacement vectors from the dead reckoning process based on the first position fix.
Abstract:
A computer-implemented method and device for determining a user position, implemented in a user handheld computing device programmed to perform the method. The method includes solving for the position of a user based on ranges, which are computed by estimating power loss between a user and a number of Wi-Fi Access Points. Embodiments of the present invention includes a method that is designed to accommodate the non-linear nature of solving a position solution using power estimates. This method includes solving a two-dimensional solution grid of position residuals, or magnitudes of error between true and computed ranges, using signal strength measurements from multiple Wi-Fi access points in order to determine local minima of the position residuals indicating a user position. Standard approaches in the area such as a Least Squares Solution overly simplify the non-linear components resulting in poor performance.
Abstract:
A computer-implemented method for determining rotational rate of a computer system programmed to perform the method includes determining in a physical perturbation sensor in the computer system, a plurality of instantaneous field measurements with respect to a reference field, at a first time and a second time, determining in the computer system, a plurality of rates of change associated with the physical perturbation sensor in response to the plurality of instantaneous field measurements at the first time and the second time, determining in the computer system, an plurality of estimated rotational rates for the computer system in response to the plurality of rates of change, and performing in the computer system, an operation in response to the plurality of estimated rotational rates.
Abstract:
A computer-implemented method and device for determining a user position, implemented in a user handheld computing device programmed to perform the method. The method includes solving for the position of a user based on ranges, which are computed by estimating power loss between a user and a number of Wi-Fi Access Points. Embodiments of the present invention includes a method that is designed to accommodate the non-linear nature of solving a position solution using power estimates. This method includes solving a two-dimensional solution grid of position residuals, or magnitudes of error between true and computed ranges, using signal strength measurements from multiple Wi-Fi access points in order to determine local minima of the position residuals indicating a user position. Standard approaches in the area such as a Least Squares Solution overly simplify the non-linear components resulting in poor performance.
Abstract:
A method and system for operating a hand-held computer system for navigation. Embodiments of the present invention includes novel improvements to a navigation method and implementation through a device, which can include inertial and/or magnetic field sensors integrated within a hand held device. The method can include using a single-fix method or a dual-fix method. The single fix method includes monitoring travel distance or time for a pre-specified condition and updating the heading from a dead reckoning process based on a first position fix by using a map. The dual-fix method includes obtaining a second position fix and updating the heading based on the difference in displacement vectors from the dead reckoning process based on the first position fix.