Abstract:
User trust scores based on registration features is described. A system identifies registration features associated with a user registered to interact with a database. The system calculates a registration trust score for the user based on a comparison of multiple registration features associated with the user to corresponding registration features associated with previous users who are restricted from interacting with the database and/or corresponding registration features associated with previous users who are enabled to interact with the database. The system restricts the user from interacting with the database if the registration trust score is above a registration threshold.
Abstract:
Contact recommendations based on purchase history are described. A system creates a directed graph of nodes in which at least some of the nodes are connected by directed arcs, wherein a directed arc from a first node to a second node represents a conditional probability that previous users who purchased a first contact also purchased a second contact. The system identifies a set of contacts purchased by a current user. The system estimates a prospective purchase probability based on a historical probability that previous users purchased a specific contact and a related probability that previous users who purchased the specific contact also purchased a contact in the set of contacts, for each candidate contact. The system outputs a recommendation for the current user to purchase a recommended candidate contact based on a corresponding prospective purchase probability.
Abstract:
User scores based on bulk record updates is described. A system receives record updates submitted by a user. The system subtracts a penalty debit from a user score, which corresponds to the user, for each record which corresponds to at least one of the record updates and which is removed from purchasing availability. The system adds a full credit to the user score for each record which corresponds to at least one of the record updates and which is purchased. The system adds a partial credit to the user score for each record which corresponds to at least one of the record updates and which is yet to be purchased and which is yet to be removed from purchasing availability, wherein the partial credit is a positive value that is less than the full credit. The system enables the user to access records, based on the user score.
Abstract:
A system creates a graph of nodes connected by arcs, and identifies a first compound attribute associated with contacts purchased by a current user. The first compound attribute includes a first attribute associated with a first value and a second attribute associated with a second value. The system identifies a directed arc from a first node to a second node. The directed arc is associated with a probability that previous users who purchased a first contact associated with the first compound attribute also purchased a second contact associated with a second compound attribute. The second compound attribute includes the first attribute, associated with a third value which matches the first value, and the second attribute, associated with a fourth value, which lacks a match with the second value. The system outputs a recommendation for the current user to purchase contacts associated with the second compound attribute if the probability exceeds a threshold.
Abstract:
A system creates a graph of nodes connected by arcs, and identifies a first compound attribute associated with contacts purchased by a current user. The first compound attribute includes a first attribute associated with a first value and a second attribute associated with a second value. The system identifies a directed arc from a first node to a second node. The directed arc is associated with a probability that previous users who purchased a first contact associated with the first compound attribute also purchased a second contact associated with a second compound attribute. The second compound attribute includes the first attribute, associated with a third value which matches the first value, and the second attribute, associated with a fourth value, which lacks a match with the second value. The system outputs a recommendation for the current user to purchase contacts associated with the second compound attribute if the probability exceeds a threshold.
Abstract:
Contact recommendations based on purchase history are described. A system creates a directed graph of nodes in which at least some of the nodes are connected by directed arcs, wherein a directed arc from a first node to a second node represents a conditional probability that previous users who purchased a first contact also purchased a second contact. The system identifies a set of contacts purchased by a current user. The system estimates a prospective purchase probability based on a historical probability that previous users purchased a specific contact and a related probability that previous users who purchased the specific contact also purchased a contact in the set of contacts, for each candidate contact. The system outputs a recommendation for the current user to purchase a recommended candidate contact based on a corresponding prospective purchase probability.