METHOD FOR PROCESSING A GASEOUS COMPOSITION

    公开(公告)号:US20220306948A1

    公开(公告)日:2022-09-29

    申请号:US17640069

    申请日:2020-05-08

    摘要: A process can treat a gaseous material mixture obtained by catalytic conversion of synthesis gas that contains at least alkenes, possibly alcohols and possibly alkanes, and also possibly nitrogen as inert gas and unconverted components of the synthesis gas, comprising hydrogen, carbon monoxide and/or carbon dioxide. After catalytic conversion of synthesis gas, separation of the product mixture obtained in this reaction into a gas phase and a liquid phase is performed by at least partial absorption of the alkenes, possibly of the alcohols and possibly of the alkanes, in a high boiling point hydrocarbon or hydrocarbon mixture as an absorption medium, separation as the gas phase of the gases not absorbed into the absorption medium, separating an aqueous phase from the organic phase of the absorption medium, preferably by decanting, and desorption of the alkenes, possibly of the alcohols and possibly of the alkanes, from the absorption medium.

    PROCESS OF PREPARING ALCOHOLS
    4.
    发明申请

    公开(公告)号:US20220298088A1

    公开(公告)日:2022-09-22

    申请号:US17640092

    申请日:2020-08-14

    摘要: A process can produce alcohols having at least two carbon atoms by catalytic conversion of synthesis gas into a mixture containing alkanes, alkenes, and alcohols. Alkenes are converted into corresponding alcohols in a subsequent step by hydration of the alkanes. Before the hydration and after the catalytic conversion, gas and liquid phases may be separated. Specific catalysts can be employed that have a markedly higher selectivity for alkenes than for alkanes. These catalysts comprise grains of non-graphitic carbon having cobalt nanoparticles dispersed therein. The cobalt nanoparticles have an average diameter dp from 1 to 20 nm, and an average distance D between nanoparticles is from 2 to 150 nm. The combined total mass fraction of metal ω in the grains ranges from 30% to 70% by weight of the total mass of the grains of non-graphitic carbon, wherein 4.5 dp/ω>D≥0.25 dp/ω.

    PROCESS FOR PREPARING ALKENES
    6.
    发明申请

    公开(公告)号:US20220306550A1

    公开(公告)日:2022-09-29

    申请号:US17640151

    申请日:2020-08-13

    摘要: A process can be used to prepare alkenes by catalytic conversion of synthesis gas to a first mixture comprising alkenes and alcohols. The alcohols present in the first mixture are converted to the corresponding alkenes by dehydration in a subsequent step. At least one alkene having two to four carbon atoms is obtained as isolated product from a product mixture by processing thereof and/or separation steps. In the catalytic conversion, a catalyst is preferably used that comprises grains of non-graphitic carbon having cobalt nanoparticles dispersed therein. The cobalt nanoparticles have an average diameter dp of 1-20 nm. An average distance D between individual cobalt nanoparticles in the grains is 2-150 nm. A combined total mass fraction ω of metal in the grains is from 30%-70% by weight of a total mass of the grains such that 4.5 dp/ω>D≥0.25 dp/ω.

    METHOD FOR CATALYTICALLY PRODUCING UREA

    公开(公告)号:US20220234999A1

    公开(公告)日:2022-07-28

    申请号:US17607716

    申请日:2020-04-27

    摘要: A process for preparing urea comprises preparing formamide based on carbon dioxide, hydrogen, and ammonia, forming methyl formate or ammonium formate as an intermediate in a catalytic reaction, and preparing urea by reacting the formamide and possibly ammonia in the presence of a catalyst. The source of carbon dioxide is a liquid laden with chemically and/or physically bound carbon dioxide and selected from a methanol phase or an aqueous ammonia solution obtained by gas scrubbing of a syngas for removing carbon dioxide using a scrubbing fluid. The scrubbing fluid can be a methanol phase, or carbon dioxide is desorbed from the scrubbing fluid and absorbed into a methanol phase to give a carbon dioxide-laden methanol phase that is then reacted as carbon dioxide-containing stream with a hydrogen-containing stream in the presence of a catalyst to form methyl formate. The methyl formate is reacted with an ammonia-containing stream to form formamide.