Abstract:
Electroporation-based therapies (EBTs) employ high voltage pulsed electric fields (PEFs) to permeabilize tumor tissue, resulting in changes in passive electrical properties detectable using electrical impedance spectroscopy (EIS). Currently, commercial potentiostats for EIS are limited by impedance spectrum acquisition time (˜10 s); this timeframe is much larger than pulse periods used with EBTs (˜1 s). Fourier Analysis SpecTroscopy (FAST) is introduced as a methodology for monitoring tissue inter-burst impedance (diagnostic FAST) and intra-burst impedance (therapeutic FAST) during EBTs. FAST is a rapid-capture (
Abstract:
A medical device for removing a material from a hollow anatomical structure is provided. The device includes a radially expandable capture member. The device includes a treatment segment that is positioned distally of the capture member in use and having at least one exit port adapted for delivering a fluid agent to the material. The device includes an embolic capture device that is positioned distally of the treatment segment in use and including a radially expandable filter for capturing a part of the material which travels downstream of the treatment segment. Additionally, a method is provided herein for infusing, injecting, distributing, or releasing an intended fluid into a hollow anatomical structure.
Abstract:
A medical device for removing a material from a hollow anatomical structure is provided. The device may include a shaft member. The device may include an expandable centering element near the distal end of the device. The device may include a macerator element either attached to the shaft or independent and freely moveable from the shaft. Alternatively, the device may include a rotating wire attached to the macerator element. The device may include an aspiration lumen in for removal of material. The device may include a drive shaft attached to a motor and used to rotate the macerator element. The device may be used in combination with a distal occlusion element, which may be either a radially expandable filter or balloon member.
Abstract:
A flow control tip for a catheter comprises a partition dividing the catheter into first and second lumens, a first orifice fluidly connected to the first lumen and a second orifice fluidly connected to the second lumen, the first orifice being proximal to the second orifice, an elongate protrusion extending along a portion of the partition substantially along a centerline of the elongated body and a deflecting surface extending at an angle relative to the protrusion to direct flow from the first orifice away from the centerline.
Abstract:
A locking clamp is provided that is used for securing at least one tube. The locking clamp has a first and second end axially opposed end pieces and a plurality of locking members extending between the first and second end pieces. Living hinges connect the first and second end pieces to the locking members and allow selective movement of the locking members between an unlocked position and a locked position. In the locked position, the locking members can extend in overlying partially coextensive relation to each other, and the one set of locking members can be defined in a substantially axially opposed, coplanar parallel relationship to the second set of locking members. The clamp may be used during high pressure applications to secure one tube in relationship to another tube.
Abstract:
A microwave applicator having a probe which comprises an elongate shaft (14), the shaft having an external tubular wall (18), a radiating portion (15) disposed at the distal end of the shaft (14), a transmission line (17) extending to the radiating portion internally of the tubular external wall (18), and an elongate flow dividing member (19) which co-extends with the transmission line (17) longitudinally of the shaft (14), the side wall of the transmission line (17) and the side wall of the flow dividing member (19) contacting each other and contacting the internal surface of the external tubular wall (18) at two-spatially separated discrete positions, thereby defining a pair of flow channels (20, 21) inside the shaft (14). In use, cooling fluid can pass down one channel (20) and return via the other channel (21). The structure of the probe is uncomplicated and the probe is straightforward to assemble.
Abstract:
A vascular access catheter is disclosed that has a catheter shaft with a distal end portion with a distal tip having a sloped face that is positioned at an acute angle from the distal tip relative to a longitudinal axis of the catheter shaft. A first, second, and third lumen extend longitudinally through the catheter shaft. The third lumen is configured for receiving a guidewire and may extend a partial length of the catheter or substantially the entire length of the catheter. The first lumen has an aperture located in the angled edge distal end portion of the catheter next to the distal tip and communicates with the first lumen. The second lumen has an aperture that is positioned in the outer surface of the catheter shaft that is in communication with the second lumen, and is spaced proximally from the first lumen aperture.
Abstract:
Systems, devices, and methods for delivering treatment to the renal arteries are provided. Exemplary systems include a delivery catheter having a distal bifurcation, an introducer assembly comprising an introducer sheath in operative association with a Y-hub, wherein Y-hub includes a first port for receiving the delivery catheter and a second port for receiving a second catheter, and a constraint assembly for holding the distal bifurcation of the delivery catheter in a low-profile configuration when it is advanced distally beyond the introducer sheath.
Abstract:
The present systems combines a drug delivery catheter and a dilator apparatus for use in lysing of clots wherein an internal dilator has a central lumen and an outer catheter is arranged coaxially about said internal dilator. An annular space for fluid passage is sealingly formed between an outer wall of the internal dilator and an inner wall of the outer infusion catheter. Apertures are located in the outer wall of the outer catheter for distributing fluid from the annular space. The internal dilator has a tip element and the outer catheter has an end opening so that together the end opening is occluded by the tip element which protrudes beyond the outer catheter when the outer catheter is arranged coaxially about the internal dilator and additionally the internal dilator is removable from the outer catheter to enable the introduction of a larger guide wire for further medical procedures.