Abstract:
A completion system for a subsea well includes a tree having a generally cylindrical wall forming an internal bore therethrough and a production port extending laterally through the wall in communication with the internal bore. The internal wall has a landing arranged to support a tubing hanger having seals for sealing the production port between the tubing hanger and the internal wall, the production port being arranged to communicate with a lateral production fluid outlet port in the tubing hanger. A workover port extends laterally from an opening in the internal wall below the production port and the production port seals and a tubing annulus seal sealing the workover port from the tubing annulus. A tubing annulus port extends from an opening in the tree below the tubing annulus seal and the tubing annulus port and workover port being arranged to be in fluid communication externally of the internal bore.
Abstract:
A two stroke engine of a particular configuration can have its power output increased by running bigger pistons and using ports in the piston skirt through which to conduct compressed air within the skirt through short passages in the cylinder housing that conduct the air from within the skirt to above the piston. As a result a larger piston can be used for the same spacing and opening size in the block to save the need to redesign the block and the crankshaft. A position adjuster for the piston moves it axially without rotation of the piston ports out of alignment with inlet ports in the housing. The piston rod is held in the crosshead using a flat to prevent rotation while an adjuster nut that is turned creates axial movement in the piston rod with a lock nut securing the final piston position.
Abstract:
With a measurement method and a measurement device for the measurement of a path covered by a first object (1) in relation to a second object (2), a measurement body (3) is deformed by a relative movement of the objects and at least a first deformation sensor (4) assigned to the measurement body (3) converts the measurement body (3) deformation into a measurement signal. The measurement signal is converted by an evaluation device (20) into information on the path covered. In order to increase the precision and measurement speed in a way that is simple structurally and saves space, the measurement signal is emitted when an area of the measurement body (3) is stretched along the longitudinal axis (6) of the measurement body (3) and a further area is compressed along the longitudinal axis (6) of the measurement body (3).
Abstract:
Apparatus for providing an enclosure, for example as a housing or to provide buoyancy, at underwater locations is disclosed comprising an inner shell and an outer shell, with a structural filler disposed between the two. The shells are prepared from fibre-reinforced plastic, with the fibres being oriented to provide resistance to both longitudinal and radial stresses induced in the apparatus by the hydrostatic pressure. The filler may be a structural filler comprising structural members extending between the inner and outer shells and occupying less than 60% of the volume of the cavity between the two shells. Alternatively, the filler may be a substantially void-free structural filler, such as a polyester resin. Methods of fabricating the apparatus are disclosed. In addition, a method of deballasting a buoyancy module is disclosed, in which the ballast, for example water, is withdrawn from the module by means of reduced pressure. Apparatus for deballasting is also disclosed.
Abstract:
A blowout preventer stack landing assist tool and landing tool adapter joint for use with a standard telescoping joint used in oil and gas drilling operations that allows lifting and moving of the riser string and blowout preventer stack without requiring disconnection of the telescoping joint, tensioning lines and associated piping from the riser string connection is disclosed.
Abstract:
The invention relates to a blowout valve assembly (blowout preventer (BOP)) comprising a connecting channel, which can be closed by at least one closing device, whereby the closing device can be transversally displaced with regard to the connecting channel by means of a drive device. The aim of the invention is to further improve a blowout valve assembly of this type in order to enable this assembly to be precisely and easily actuated by remote control and while, at the same time, reliably preventing an unintentional opening of the closing device. To this end, the drive device comprises at least two electric motors, which can be operated individually or in a synchronized manner, and comprises a transmission device having at least one irreversible transmission unit. In order to displace the closing device, said transmission unit is drive-connected to both electric motors.
Abstract:
The invention relates to an actuating device for regulating a control mechanism which is subject to a force against the direction of regulation. Said actuating device comprises a drive device which has a drive shaft and is connected in a moveable manner to a rotating spindle, by which means an actuating element can be axially displaced in the direction of regulation, in a housing receiving the device. The aim of the invention is to improve one such actuating device in such a way that actuation of the control mechanism is guaranteed in a constructively simple and cost-effective manner. In order to achieve this, the drive device comprises at least two electric motors which can respectively be actuated and controlled for the rotation of the drive shaft.
Abstract:
A rotating regulating device for the rotation and/or linear displacement of an actuating element of a valve, throttle, blowout preventer or similar, in particular in the field of gas or oil supply, exhibits a spindle drive and a drive train rotationally driving the spindle drive, the said drive train exhibiting at least one reduction gear unit and a drive device connected to it for movement. In order that the regulation of the actuating element is possible in an extremely accurate, finely controlled and reproducible manner even with different drive devices and with simple and compact construction, the rotating spindle or nut of the spindle drive exhibits at least one engaging element, essentially protruding radially outwards, which engages guide slots, whereby a first guide slot is fixed relative to a device housing and a second guide slot can be rotated relative to the device housing and/or is supported for displacement in the longitudinal direction of the rotating spindle, whereby the guide slots exhibit at least different slopes in the longitudinal direction of the rotating spindle and the movable guide slot is connected for movement to the actuating element.
Abstract:
A pressure compensated shear seal solenoid valve for use in subsea control systems is disclosed utilizing an arcuate cross section fluid passageway to improve flow rates, ease of serviceability and reduce size.
Abstract:
A valve actuator comprising a lower housing comprising a mounting spool that is operable to couple to a valve body. A rotating sleeve is disposed within the lower housing and coupled to a stem connector. A fixed sleeve in disposed within the lower housing and includes a first slot disposed therethrough. A second slot is disposed in the rotating sleeve, wherein at least one of the slots is a helical slot. An axle engages both the first slot and the second slot. A shaft is coupled to the axle and extends through a connector flange that is coupled to an upper end of the lower housing. A piston is coupled to the shaft and movably disposed within an upper housing that is coupled to the connector flange. Axial movement of the piston within the upper housing will result in rotational movement of the rotating sleeve.