Abstract:
A multi-cavity coinjection mold having a relatively large plurality of cavities for simultaneously molding a relatively large plurality of multi-layered articles including a) a plurality of cavity groups each defining a relatively small plurality of said cavities, a single balanced hot runner for supplying said relatively small plurality of cavities with contiguous different plastics materials, and a valve for sequentially supplying desired contiguous quantities of the plastics materials from plastics material sources, common to all of said groups, to the balanced hot runner; and b) a hot runner manifold system connected to the plastic material sources to supply the plastic materials to all of the valves; and related methods.
Abstract:
A multi-cavity coinjection mold having a relatively large plurality of cavities for simultaneously molding a relatively large plurality of multi-layered articles including a) a plurality of cavity groups each defining a relatively small plurality of said cavities, a single balanced hot runner for supplying said relatively small plurality of cavities with contiguous different plastics materials, and a valve for sequentially supplying desired contiguous quantities of the plastics materials from plastics material sources, common to all of said groups, to the balanced hot runner; and b) a hot runner manifold system connected to the plastic material sources to supply the plastic materials to all of the valves; and related methods.
Abstract:
A preform having an annular wall region of increased wall thickness to produce a blow molded container having an annular concavity in a wall portion thereof to provide a hand grip feature, such a container when blow molded from such a preform and a carbonated beverage container having intaglio hand grip wall hand grip features.
Abstract:
A multi-cavity coinjection mold and method for simultaneously producing a plurality of multi-layered articles comprising: a mold structure defining a plurality of mold cavities; a first supply source for supplying metered amounts of a first molding material; a second supply source for supplying metered amounts of a second molding material; a hot runner system in communication with the first and second supply sources for conveying the metered amounts of the first and the second materials separately to a region proximate each of the cavities; a valve mechanism per cavity for receiving the metered amounts of the first and second materials from the hot runner system and for sequentially supplying desired quantity of the first and second materials contiguously to each cavity.
Abstract:
A process for injection molding a multi-colored article in an injection mold, in which a) a desired initial quantity of a first-colored material is metered to a first desired portion of the cavity; b) a desired quantity of a second-colored material is supplied to the cavity, contiguously with the first-colored material, and is metered to a second desired portion of the cavity. The location of the first and second desired portions within in the cavity being controlled by providing the first and second-colored materials with appropriate melt viscosities and controlling the temperature and rate of supply of the first and second-colored materials. A multi-colored preform formed by the process that is suitable for blow molding a multi-colored container, and a multi-colored container blow molded from such a preform are also provided.
Abstract:
A method of forming a wide mouth blow molded thermoplastic container comprising the steps of i) stretch blow molding from a preform, an intermediate article defining the container with the mouth being threaded and/or flanged, the mouth terminating in an accommodation element having a neck finish that supports the preform in the blow mold; ii) heat setting the intermediate article including the entire container while still in the mold, and iii) removing the intermediate article of manufacture from the mold and severing the accommodation element to produce the container, and an article when made by the method. The method also includes post forming of a rim portion of the container following separation of the container from the accommodation element.
Abstract:
A method of forming a wide mouth blow molded thermoplastic container comprising the steps of i) stretch blow molding from a preform, an intermediate article defining the container with the mouth being threaded and/or flanged, the mouth terminating in an accommodation element having a neck finish that supports the preform in the blow mold; ii) heat setting the intermediate article including the entire container while still in the mold, and iii) removing the intermediate article of manufacture from the mold and severing the accommodation element to produce the container, and an article when made by the method.
Abstract:
The invention provides a light weight self-standing blow molded two liter carbonated beverage bottle having a unique petaloid base made from a monobase preform. The base comprises a petaloid design which has a plurality of at least three (preferably five) feet. The monobase preform has a thick reinforcing ring forming portion which remains unstretched during blowing. The reinforcing ring forming portion is thicker than both the sidewall forming portion and the gate area forming portion of the preform thereby resulting in increased stretching in both those areas. The reinforcing ring extends circumferentially around the base. By providing such a reinforcing ring, a bottle having a bigger foot radius and/or containing less material use can be realized. The resulting bottle has less stress whitening and greater stress crack resistance while at the same time using less material and/or having a larger radius than prior bottles.