Abstract:
A method of manipulating allogeneic cells for use in allogeneic cell therapy providing a composition of highly activated allogeneic T-cells which are infused into immunocompetent cancer patients to elicit a novel anti-tumor immune mechanism, or “Mirror Effect”. In contrast to current allogeneic cell therapy protocols where T-cells in the graft mediate the beneficial graft vs. tumor (GVT) and detrimental graft vs. host (GVH) effects, the allogeneic cells of the present invention stimulate host T-cells to mediate the “mirror” of these effects. The mirror of the GVT effect is the host vs. tumor (HVT) effect. The “mirror” of the GVH effect is the host vs. graft (HVG) effect The anti-tumor HVT effect occurs in conjunction with a non-toxic HVG rejection effect. The highly activated allogeneic cells of the invention can be used to stimulate host immunity in a complete HLA mis-matched setting in a patient.
Abstract:
The disclosure herein relates generally to immunotherapy and, more specifically, to the use of immunotherapy for treating tumors and pathogen infected tissues. The immunotherapy relates to first priming patients with allogeneic cells designed to be rejected by a Th1 mediated mechanism, then inducing in situ necrosis or apoptosis in a tumor or pathogen infected lesion. Necrosis or apoptosis can be induced by methods such as cryotherapy, irreversible electroporation, chemotherapy, radiation therapy, ultrasound therapy, ethanol chemoablation, microwave thermal ablation, radiofrequency energy or a combination thereof applied against at least a portion of the tumor or pathogen infected tissue. One or more doses of allogeneic cells (e.g., Th1 cells) are then delivered within or proximate to the tumor or pathogen-infected tissue in the primed patient. The present invention provides an immunotherapeutic strategy to develop de-novo systemic (adaptive) immunity to a tumor or pathogen.
Abstract:
A method of manipulating allogeneic cells for use in allogeneic cell therapy providing a composition of highly activated allogeneic T-cells which are infused into immunocompetent cancer patients to elicit a novel anti-tumor immune mechanism, or “Mirror Effect”. In contrast to current allogeneic cell therapy protocols where T-cells in the graft mediate the beneficial graft vs. tumor (GVT) and detrimental graft vs. host (GVH) effects, the allogeneic cells of the present invention stimulate host T-cells to mediate the “mirror” of these effects. The mirror of the GVT effect is the host vs. tumor (HVT) effect. The “mirror” of the GVH effect is the host vs. graft (HVG) effect The anti-tumor HVT effect occurs in conjunction with a non-toxic HVG rejection effect. The highly activated allogeneic cells of the invention can be used to stimulate host immunity in a complete HLA mis-matched setting in a patient.
Abstract:
This invention relates to compositions and methods for immunotherapy of cancer. Specifically, a method of cancer immunotherapy is described which results in the systemic liquidation of both solid and metastatic tumors whereever they reside in the body. The compositions include activated allogeneic Th1 cells that when administered appropriately lead to liquidation of tumors. The method includes administering priming doses of the therapeutic composition, ablation of a selected tumor lesion along with intratumoral injection of the composition and then infusion of the therapeutic composition. These steps enable the systemic liquidation of tumors secondary to immune cell infiltration and leads to immune-mediated tumor eradication.
Abstract:
A method of manipulating allogeneic cells for use in allogeneic cell therapy providing a composition of highly activated allogeneic T-cells which are infused into immunocompetent cancer patients to elicit a novel anti-tumor immune mechanism, or “Mirror Effect”. In contrast to current allogeneic cell therapy protocols where T-cells in the graft mediate the beneficial graft vs. tumor (GVT) and detrimental graft vs. host (GVH) effects, the allogeneic cells of the present invention stimulate host T-cells to mediate the “mirror” of these effects. The mirror of the GVT effect is the host vs. tumor (HVT) effect. The “mirror” of the GVH effect is the host vs. graft (HVG) effect. The anti-tumor HVT effect occurs in conjunction with a non-toxic HVG rejection effect. The highly activated allogeneic cells of the invention can be used to stimulate host immunity in a complete HLA mis-matched setting in a patient.
Abstract:
A novel cell type has been generated that has both Th1 characteristics and cytolytic activity. These Th1/killer cells are CD4+ cells purified from peripheral blood and manipulated to have Th1 characteristics such as production of IFN-gamma combined with cytolytic activity similar to cytotoxic T-cells (CTL). The CTL activity is targeted toward diseased cells, not normal cells. The cytolytic activity of the Th1/killer cells is mediated by Granzyme B-Perforin mechanism and results in apoptotic death of diseased cells. Methods of producing and using these Th1/killer cells include isolating CD4+ cells from peripheral blood, activating the CD4+ T-cells to form Th1/killer cells and administering these Th1/killer cells with the cytolytic activity to a patient wherein the Th1/killer cells are allogeneic to the patient.
Abstract:
The present invention relates to methods of suppressing the immune tolerance of a disease or disease antigens in a patient. The method also promotes the activity of the effector T lymphocytes. The invention includes administering a therapeutic composition that promotes a Th1 environment in the patient while decreasing the immunosuppressive activity of Treg cells that can lead to disease antigen tolerance and immunoavoidance of the disease antigens by the patient. The therapeutic composition includes allogeneic emTh-1 cells. The therapeutic composition can also include disease antigens such as the chaperone-rich cell lysate of the disease antigen.
Abstract:
The composition of activated CD4 cells is derived from a healthy human donor. The composition from the healthy human donor is suspended in an infusion media and packaged in a vehicle for administration to a subject to treat disease.
Abstract:
A method for formulating T-cells for use as a medicant comprises activating the T-cells by incubating the T-cells in a nutrient culture media with an activating agent. The T-cells together with the activating agent are suspended in a media suitable for infusion. The activated T-cells are packaged together with the activating agent in a container suitable for administration to a patient.
Abstract:
Ex-vivo prepared T-cells are harvested from cell culture conditions and formulated in medium suitable for infusion. The formulation is made by labeling the cells with one or more agents which have reactivity for T-cell surface moieties capable of delivery activation signals upon cross-linking and mixing the labeled cells with biodegradable nanospheres or microspheres coated with a material capable of cross-linking the agents attached to the T-cell surface moieties. Alternatively, the formulation may be made by mixing a population of T-cells with biodegradable nanospheres or microspheres coated with a first material and one or more second materials. The first material binds the second material and the second material has reactivity for surface moieties on the T-cells and the interaction of the second materials with the T-cells causes the activation of the T-cells. In either method, the mixture of T-cells and biodegradable spheres are suspended in a medium suitable for infusion, and the mixture is packaged in a container.