Abstract:
An apparatus for recirculating fluids in semiconductor systems. The apparatus including a base portion, an inlet portion coupled to a first end of the base portion, and a nozzle coupled to a second end of the base portion. The nozzle including a helical groove extending from a position near a nozzle base portion to a position near a tip of the nozzle portion. The helical groove extending from an exterior surface through the nozzle portion to an interior surface of the nozzle portion. Methods of using the apparatus in a semiconductor recirculation system are also disclosed.
Abstract:
Systems and methods for processing high purity materials are disclosed. A unit operation processes a material stream, an operational parameter of the unit operation is monitored, and a standby unit is charged with pressurized gas to achieve system pressure. The material stream is diverted to the standby unit in response to the operational parameter of the unit operation registering a threshold value. Flow exiting the standby unit is first vented via an outlet, and then directed toward a point of use after the pressurized gas has been purged. The unit operation may then be serviced and subsequently brought back online. A second unit operation may process a second material stream simultaneously, and the second material stream may be periodically diverted to the standby unit in like manner, thus reducing line pressure variation. The disclosed method may be performed manually or implemented automatically through use of a controller.
Abstract:
An improved method and apparatus for blending process materials. Preferred embodiments of the present invention are directed to a process material contacting system to increase wetted surface area for liquid contact as well as increase forced convective mixing efficiency of the liquid mixture. Use of a novel process material contacting apparatus allows one solid feeding element to serve multiple process material tanks, thus reducing overall system costs and decreasing set-up time/process variability while increasing operational efficiency. According to a preferred embodiment of the present invention, rather than adding a process material to a volume of liquid held in a blending tank, the added process material is remotely blended with the liquid outside the process material tank.
Abstract:
Continuous equipment operation is facilitated despite disablement of an automation controller for controlling the equipment. A safe state in which equipment is to be maintained upon disablement of the automation controller is determined. Safe state data is provided for configuring an I/O module, through which the automation controller controls the equipment, with the safe state data to facilitate maintaining the equipment in the safe state during disablement of the automation controller. In one embodiment, upon subsequent enablement of the automation controller, a current state of the I/O module is evaluated and an automatic control state into which the equipment is to be transitioned is determined. The equipment is then transitioned to the determined automatic control state.
Abstract:
An improved method and apparatus for blending process materials. Preferred embodiments of the present invention are directed to a process material contacting system to increase wetted surface area for liquid contact as well as increase forced convective mixing efficiency of the liquid mixture. Use of a novel process material contacting apparatus allows one solid feeding element to serve multiple process material tanks, thus reducing overall system costs and decreasing set-up time/process variability while increasing operational efficiency. According to a preferred embodiment of the present invention, rather than adding a process material to a volume of liquid held in a blending tank, the added process material is remotely blended with the liquid outside the process material tank.
Abstract:
A method and apparatus for blending and supplying process materials. The method and apparatus are particularly applicable to the blending of ultra-high purity chemicals, the blending of abrasive slurries with other chemicals for the polishing of semiconductor wafers, and high-accuracy blending of chemicals. The apparatus may include a dispensing subsystem that supplies process materials to a mixing subsystem where they are blended with a static mixer. The method may include supplying process materials with a dispensing subsystem and blending the process materials in a static mixer.
Abstract:
Insertion fitting/coupler devices for coupling to a flowpath, and methods of using such insertion fitting/coupler devices, are disclosed. The insertion fitting/coupler devices include a coupler that includes a through hole and a stem portion. The insertion fitting/coupler devices also include a nut that includes a through hole, a rim and a body portion. The insertion fitting/coupler devices further include a body member that includes a through hole and an outer flange. The body member extends into the through hole of the coupler such that an end of the stem portion of the coupler engages the outer flange of the body member. An inner side of the body portion of the nut engages with an outer surface of the stem portion of the coupler such that the flange is secured between the rim of the coupler and the end of the stem portion of the coupler.
Abstract:
An apparatus for recirculating fluids in semiconductor systems. The apparatus including a base portion, an inlet portion coupled to a first end of the base portion, and a nozzle coupled to a second end of the base portion. The nozzle including a helical groove extending from a position near a nozzle base portion to a position near a tip of the nozzle portion. The helical groove extending from an exterior surface through the nozzle portion to an interior surface of the nozzle portion. Methods of using the apparatus in a semiconductor recirculation system are also disclosed.
Abstract:
An improved method and apparatus for blending process materials. Preferred embodiments of the present invention are directed to a process material contacting system to increase wetted surface area for liquid contact as well as increase forced convective mixing efficiency of the liquid mixture. Use of a novel process material contacting apparatus allows one solid feeding element to serve multiple process material tanks, thus reducing overall system costs and decreasing set-up time/process variability while increasing operational efficiency. According to a preferred embodiment of the present invention, rather than adding a process material to a volume of liquid held in a blending tank, the added process material is remotely blended with the liquid outside the process material tank.
Abstract:
Continuous equipment operation is facilitated despite disablement of an automation controller for controlling the equipment. A safe state in which equipment is to be maintained upon disablement of the automation controller is determined. Safe state data is provided for configuring an I/O module, through which the automation controller controls the equipment, with the safe state data to facilitate maintaining the equipment in the safe state during disablement of the automation controller. In one embodiment, upon subsequent enablement of the automation controller, a current state of the I/O module is evaluated and an automatic control state into which the equipment is to be transitioned is determined. The equipment is then transitioned to the determined automatic control state.