Abstract:
A vertically folded probe is provided that can provide improved scrub performance in cases where the probe height is limited. More specifically, such a probe includes a base and a tip, and an arm extending from the base to the tip as a single continuous member. The probe arm is vertically folded, such that it includes three or more vertical arm portions. The vertical arm portions have substantial vertical overlap, and are laterally displaced from each other. When such a probe is vertically brought down onto a device under test, the probe deforms. During probe deformation, at least two of the vertical arm portions come into contact with each other. Such contact between the arm portions can advantageously increase the lateral scrub motion at the probe tip, and can also advantageously reduce the probe inductance.
Abstract:
A probe having a conductive body and a contacting tip that is terminated by one or more blunt skates for engaging a conductive pad of a device under test (DUT) for performing electrical testing. The contacting tip has a certain width and the blunt skate is narrower than the tip width. The skate is aligned along a scrub direction and also has a certain curvature along the scrub direction such that it may undergo both a scrub motion and a self-cleaning rotation upon application of a contact force between the skate and the conductive pad. While the scrub motion clears oxide from the pad to establish electrical contact, the rotation removes debris from the skate and thus preserves a low contact resistance between the skate and the pad. The use of probes with one or more blunt skates and methods of using such self-cleaning probes are especially advantageous when testing DUTs with low-K conductive pads or other mechanically fragile pads that tend to be damaged by large contact force concentration.
Abstract:
The present invention is a set of layered probes that make electrical contact to a device under test. The layered probes are disposed within openings of at least one guide plate. The guide plate surrounds the probes via the openings.
Abstract:
Improved probing of closely spaced contact pads is provided by an array of vertical probes having all of the probe tips aligned along a single contact line, while the probe bases are arranged in an array having two or more rows parallel to the contact line. With this arrangement of probes, the probe base thickness can be made greater than the contact pad spacing along the contact line, thereby advantageously increasing the lateral stiffness of the probes. The probe tip thickness is less than the contact pad spacing, so probes suitable for practicing the invention have a wide base section and a narrow tip section.
Abstract:
Method and apparatus using a retention arrangement with a potting enclosure for holding a plurality of probes by their retention portions, the probes being of the type having contacting tips for establishing electrical contact with pads or bumps of a device under test (DUT) to perform an electrical test. The retention arrangement has a top plate with top openings for the probes, a bottom plate with bottom openings for the probes, the plates being preferably made of ceramic with laser-machined openings, and a potting enclosure between the plates for admitting a potting agent that upon curing pots the retaining portions of the probes. In some embodiments a spacer is positioned between the top and bottom plates for defining the potting enclosure. Alternatively, the retention arrangement has intermediate plates located in the potting enclosure and having probe guiding openings to guide the probes.
Abstract:
Method and apparatus using a retention arrangement with a potting enclosure for holding a plurality of probes by their retention portions, the probes being of the type having contacting tips for establishing electrical contact with pads or bumps of a device under test (DUT) to perform an electrical test. The retention arrangement has a top plate with top openings for the probes, a bottom plate with bottom openings for the probes, the plates being preferably made of ceramic with laser-machined openings, and a potting enclosure between the plates for admitting a potting agent that upon curing pots the retaining portions of the probes. In some embodiments a spacer is positioned between the top and bottom plates for defining the potting enclosure. Alternatively, the retention arrangement has intermediate plates located in the potting enclosure and having probe guiding openings to guide the probes.
Abstract:
In assembly of probe arrays for electrical test, a problem can arise where a bonding agent undesirably wicks between probes. According to embodiments of the invention, this wicking problem is alleviated by disposing an anti-wicking agent on a surface of the probe assembly such that wicking of the bonding agent along the probes toward the probe tips is hindered. The anti-wicking agent can be a solid powder, a liquid, or a gel. Once probe assembly fabrication is complete, the anti-wicking agent is removed. In preferred embodiments, a template plate is employed to hold the probe tips in proper position during fabrication. In this manner, undesirable bending of probes caused by introduction or removal of the anti-wicking agent can be reduced or eliminated.
Abstract:
In assembly of probe arrays for electrical test, a problem can arise where a bonding agent undesirably wicks between probes. According to embodiments of the invention, this wicking problem is alleviated by disposing an anti-wicking agent on a surface of the probe assembly such that wicking of the bonding agent along the probes toward the probe tips is hindered. The anti-wicking agent can be a solid powder, a liquid, or a gel. Once probe assembly fabrication is complete, the anti-wicking agent is removed. In preferred embodiments, a template plate is employed to hold the probe tips in proper position during fabrication. In this manner, undesirable bending of probes caused by introduction or removal of the anti-wicking agent can be reduced or eliminated.