摘要:
Methods of treating cancer using antisense oligonucleotides directed against DNA double-strand break repair proteins such as BRCA2 or RAD51 are provided. The antisense oligonucleotides can he used alone, in tandem or in combination with other cancer therapies, in particular with therapies that lead to DNA damage, inhibition of DNA repair or inhibition of DNA synthesis, such as radiation, platinum drugs, alkylating agents, PARP inhibitors, or inhibitors of thymidylate synthase.
摘要:
The present invention provides RAD51 inhibitors having the structural formula (I): or a pharmaceutically acceptable salt or solvate thereof. Also provided are methods of treating or preventing cancer comprising administration of the compounds of the present invention, as well as uses of the compounds to induce a synergistic effect with known chemotherapeutic.
摘要:
Methods of treating cancer using antisense based therapies including antisense oligonucleotides of si RNAs directed against DNA double-strand break repair proteins such as BRCA2 or RAD51 are provided. The antisense based therapies can be used alone, in tandem or in combination with other cancer therapies, in particular with therapies that lead to DNA damage, inhibition of DNA repair or inhibition of DNA synthesis, such as radiation, platinum drugs, alkylating agents, PARP inhibitors, or inhibitors of thymidylate synthase.
摘要:
Effective combinations of antisense oligonucleotides directed against thymidylate synthase mRNA are provided for use in cancer therapies. Combinations of antisense oligonucleotides have enhanced activity compared to the activity of the individual antisense oligonucleotides when used alone. The combinations may be used in conjunction with one or more chemotherapeutic agents to enhance the effects of the chemotherapeutic(s). Such antisense oligonucleotide combinations constitute improved antisense therapies with application to a variety of cancers or proliferative disorders, including drug resistant cancers.
摘要:
Antisene oligonucleotides targeted to sequences in thymidylate synthase (TS) mRNA. In particular the invention relates to antisense oligonucleotides targeted to sequences in the 3′ end of TS mRNA, which are both cytostatic on their own when administered to human tumour cell lines, and which also enhance the toxicity of anticancer drugs such as Tomudex. The invention also relates to antisense oligonucleotides targeted to sequences at or near the translation start site at the 5′ end of TS mRNA which induce TS gene transcription and enhance cell growth. The invention further relates to a combination product comprising an antisense oligonucleotide in combination with an anticancer agent such as Tomudex (N-(5[N-3,4-dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino]-2-thenoyl)-L-glutamic acid) or the Zeneca development compound ZD 9331 ((S)-2-(2-fluoro-4-[N-(4-hydroxy-2,7-dimethylquinazolin-6-ylmethyl)-N-(prop-2-ynyl)amino] benzamido-4-(1H-1,2,3,4-tetrazol-5-yl) butyric acid), and to the use of such a combination product in the treatment of cancer.
摘要:
Methods of treating cancer using antisense oligonucleotides directed against DNA double-strand break repair proteins such as BRCA2 or RAD51 are provided. The antisense oligonucleotides can be used alone, in tandem or in combination with other cancer therapies, in particular with therapies that lead to DNA damage, inhibition of DNA repair or inhibition of DNA synthesis, such as radiation, platinum drugs, alkylating agents, PARP inhibitors, or inhibitors of thymidylate synthase.
摘要:
Methods of treating cancer using antisense oligonucleotides directed against DNA double-strand break repair proteins such as BRCA2 or RAD51 are provided. The antisense oligonucleotides can be used alone, in tandem or in combination with other cancer therapies, in particular with therapies that lead to DNA damage, inhibition of DNA repair or inhibition of DNA synthesis, such as radiation, platinum drugs, alkylating agents, PARP inhibitors, or inhibitors of thymidylate synthase.
摘要:
Effective combinations of antisense agents directed against thymidylate synthase mRNA are provided for use in cancer therapies. Combinations of antisense agents have enhanced activity compared to the activity of the individual antisense agents when used alone. The combinations may be used in conjunction with one or more chemotherapeutic agents to enhance the effects of the chemotherapeutic(s). Such antisense agent combinations constitute improved antisense therapies with application to a variety of cancers or proliferative disorders, including drug resistant cancers.