Abstract:
The invention is in the field of use of engineered microbes for the delivery and administration of therapeutic peptides or proteins to humans or animals suffering from a disease, or the use of engineered microbes for the delivery of antigens such as for vaccination purposes. More in particular, the invention relates to a recombinant microbe that has reduced capacity of colonizing the mucosa in comparison to its wild type ancestor, in particular when residing in the alimentary tract as part of a treatment or vaccination of a human or animal. In particular, the recombinant microbe contains an inactive thymidylate synthase gene that causes the reduced capability for the microbe to colonize in the alimentary tract. The invention also covers the use of said recombinant microbes comprising nucleic acids or vectors for expressing heterologous or homologous proteins; and also for delivery, especially therapeutic delivery, of the said proteins to animals or humans.
Abstract:
Antisense oligonucleotides directed to the coding region of a mammalian thymidylate synthase mRNA that are capable of inhibiting the proliferation of cancer cells without decreasing the level of thymidylate synthase mRNA in the cells are provided. The antisense oligonucleotides are also capable of inducing apoptosis in the cancer cells. The antisense oligonucleotides can be used to inhibit the proliferation of cancer cells and to induce apoptosis in cancer cells. Methods of treating cancer, and in particular breast cancer, with the antisense oligonucleotides, alone or in combination with other therapeutics, are also provided.
Abstract:
The present invention provides a biologically pure isolate of the genus Salmonella having a disruption of at least one gene selected from the group consisting of aroA, rfaH, and thyA, as well as a method of treating cancer including the step of administering such a Salmonella to a subject in need thereof.
Abstract:
The present invention provides antisense oligonucleotides useful for identifying drug targets for cancer therapies and for enhancing current cancer therapies. The oligonucleotides of the invention are complementary to thymidylate synthase mRNA and affect expression of at least one other gene. For the enhancement of cancer therapies, such antisense oligonucleotides can be used in conjunction with standard chemotherapeutic agents in order to target thymidylate synthase, as well as other appropriate targets. The antisense oligonucleotides and the methods of the invention constitute improved antisense therapies with application to a variety of cancers.
Abstract:
The present invention provides a mutated human TS, said mutated synthase differing from wild type TS at amino acid residue 49, amino acid residue 52, amino acid residue 108, amino acid residue 221 or amino acid residue 225. Also provided is cDNA mutated human TSs and novel vectors and host cells and methods of using the mutated human TSs.
Abstract:
Disclosed herein are cells and cell lines that are selected for retention of at least two exogenous nucleic acid constructs using a single selective pressure. Also disclosed herein are compositions and methods for generating recombinant cells and cell lines using a single selective pressure.
Abstract:
The current disclosure provides for specific peptides, and derived ionization characteristics of the peptides, from the ALK, Ros, Ron, Ret, TS, and/or FGFR1 proteins that are particularly advantageous for quantifying the ALK, Ros, Ron, Ret, TS, and/or FGFR1 proteins directly in biological samples that have been fixed in formalin by the methods of Selected Reaction Monitoring (SRM) mass spectrometry, or as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed wherein the biological sample is selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded. A protein sample is prepared from the biological sample using the Liquid Tissue™ reagents and protocol and the ALK, Ros, Ron, Ret, TS, and/or FGFR1 proteins are quantitated in the Liquid Tissue™ sample by the method of SRM/MRM mass spectrometry, by quantitating in the protein sample at least one or more of the peptides described. These peptides can be quantitated if they reside in a modified or an unmodified form. An example of a modified form of an ALK, Ros, Ron, Ret, TS, and/or FGFR1 fragment peptide is phosphorylation of a tyrosine, threonine, serine, and/or other amino acid residues within the peptide sequence.
Abstract:
The objective of this invention is to create a double thyA folA knockout Escherichia coli (E. coli) strain for antifolate screening against DHFR of malaria and other parasites. This strain is used together with a plasmid expressing DHFR-TS from the desired pathogenic organism, which constitutes an anti-DHFR assay against the pathogenic organism of interest. The benefit of this invention is that there is no interference from either host DHFR or trimethoprim, a bacterial DHFR inhibitor. This tool is easy to use and maintain. It provides quick and reliable results as compared with conventional anti-malarial and anti-parasitic assays. This invention should facilitate discovery of new anti-DHFR compounds against malaria and other parasitic diseases.
Abstract:
This invention provides a novel RNAi molecule that can significantly potentiate antitumor effects of a 5-FU antitumor agent. The RNAi molecule comprises the nucleotide sequence shown in SEQ ID NO: 2. The invention also provides an antitumor agent comprising such RNAi molecule and a 5-FU antitumor agent.
Abstract translation:本发明提供了可显着增强5-FU抗肿瘤剂抗肿瘤作用的新型RNAi分子。 RNAi分子包含SEQ ID NO:2所示的核苷酸序列。本发明还提供包含这种RNAi分子和5-FU抗肿瘤剂的抗肿瘤剂。
Abstract:
Compounds, compositions and methods are provided for modulating the expression of human thymidylate synthase. The compositions comprise antisense oligonucleotides targeted to nucleic acids encoding thymidylate synthase. Methods of using these oligonucleotides for modulation of thymidylate synthase expression and for treatment of diseases such as cancers believed to be responsive to modulation of thymidylate synthase expression are provided.