Abstract:
A method for patterning a metal layer on a substrate is disclosed. Furthermore, a kit comprising a first composition comprising a reducing agent and a second composition comprising a metal salt, and an article comprising a substrate in contact with a metal layer are also disclosed.
Abstract:
A substrate unloading system comprising a gripper mounted on a slanted plane and movable along the slanted plane, and a platen onto which the substrate is attached, the platen configured to be moved down in a vertical direction and away from the gripper in a horizontal direction, the gripper and the platen configured to move simultaneously so that the substrate remains substantially horizontal.
Abstract:
Disclosed are systems and methods, including a method that includes depositing a curable adhesive onto a first surface of a substrate in a pre-determined pattern, placing topping material onto the substrate with the deposited adhesive, and applying UV energy to the substrate including the deposited adhesive and the placed topping material to cause curing of the deposited adhesive.
Abstract:
A printing system comprising a load station to load one or more substrates, a first platen to receive the substrates movably connected to a first side of the system, a second platen to receive the substrates, movably connected to a second side of the system opposite the first side, a platen transport system operatively connected to the load station, the platen transport system moving the first and second platens in the system, an alignment station which aligns the one or more substrates on the first and second platens, a print station which prints the one or more substrate on the first and second platens, and an unload station which unloads the one or more substrates nom the first and second platens, the transport system comprising means to move the platens in a horizontal and vertical direction.
Abstract:
The subject matter discloses a printing enhancement system, comprising one or more printing enhancement modules configured to perform a printing enhancement operation on a substrate, a drum configured to carry the substrate, said drum is connected to a drum actuation mechanism configured to move the drum at a rotational movement, a processing module coupled to the drum actuation mechanism and to the one or more printing enhancement modules, wherein the processing module sends commands to the drum actuation mechanism to move the drum and sends commands to the one or more printing enhancement modules to dispense the materials according to a printing enhancement task, wherein the one or more printing enhancement modules are arranged around a circumference of the drum, wherein the rotational movement enables to bring the substrate closer to a selected printing enhancement module of the one or more printing enhancement modules.
Abstract:
Disclosed are systems, machines and products for producing foil relief. The system includes apparatuses for placing a foil on a curable adhesive deposited on a substrate when the curable adhesive is substantially non-tacky, and applying energy to the adhesive deposited on the substrate while pressing the foil to the adhesive to cause the adhesive to become tacky and to adhere to the foil. The adhesive becomes substantially fully cured prior to completion of the pressing of the foil to the adhesive deposited on the substrate. In some embodiments, the system may further include one or more energy sources for pre-curing the curable adhesive prior to placing the foil on the adhesive to initiate the curing process of the adhesive and manipulate a viscosity level of the adhesive, with the pre-cured adhesive remaining substantially non-tacky. The curable adhesive includes one or more of, for example, a radical type adhesive and/or a cationic adhesive.
Abstract:
An adaptive overprint system for providing an overprint upon a substrate; the substrate comprising a plurality of registration markers at predetermined locations thereon and at least one pre-printed feature; the system comprising: an imager for capturing a digital image of said substrate with said registration markers and said feature; a printing platform upon which the substrate resides during overprinting; a printing mechanism for stamping said overprint upon said pre-printed feature; a controller operatively connected to said imager and said printing mechanism; and a handling device to move the substrate in and out of the printer; wherein said controller is adapted to identify and calculate the shift in said pre-printed feature based on said image of the substrate received from said imager, and to calculate a correlating compensation or correction shift to be electronically applied to the overprinted image.
Abstract:
Disclosed are methods, systems, machines and products, including a method for producing foil relief. The method includes placing a foil on a curable adhesive deposited on a substrate when the curable adhesive is substantially non-tacky, and applying energy to the adhesive deposited on the substrate while pressing the foil to the adhesive to cause the adhesive to become tacky and to adhere to the foil. The adhesive becomes substantially fully cured prior to completion of the pressing of the foil to the adhesive deposited on the substrate. In some embodiments, the method may further include pre-curing the curable adhesive prior to placing the foil on the adhesive to initiate the curing process of the adhesive and manipulate a viscosity level of the adhesive, with the pre-cured adhesive remaining substantially non-tacky. The curable adhesive includes one or more of, for example, a radical type adhesive and/or a cationic adhesive.
Abstract:
The subject matter discloses a printing enhancement system, comprising one or more printing enhancement modules configured to perform a printing enhancement operation on a substrate, a drum configured to carry the substrate, said drum is connected to a drum actuation mechanism configured to move the drum at a rotational movement, a processing module coupled to the drum actuation mechanism and to the one or more printing enhancement modules, wherein the processing module sends commands to the drum actuation mechanism to move the drum and sends commands to the one or more printing enhancement modules to dispense the materials according to a printing enhancement task, wherein the one or more printing enhancement modules are arranged around a circumference of the drum, wherein the rotational movement enables to bring the substrate closer to a selected printing enhancement module of the one or more printing enhancement modules.
Abstract:
Disclosed are systems and methods, including a method that includes depositing a curable adhesive onto a first surface of a substrate in a pre-determined pattern, placing topping material onto the substrate with the deposited adhesive, and applying UV energy to the substrate including the deposited adhesive and the placed topping material to cause curing of the deposited adhesive.