摘要:
A quartz glass crucible including a bottom portion, a curved portion, and a straight body portion, where the quartz glass crucible includes an outer layer including opaque quartz glass containing bubbles therein, and an inner layer including transparent quartz glass, the outer layer includes a plurality of layers in a part of the straight body portion, out of the plurality of layers, one layer having a devitrification spot number of 50/cm3 or more and 70/cm3 or less when the quartz glass crucible is heated at 1600° C. for 24 hours, and a layer positioned inwards of the devitrifiable layer in a thickness direction of the quartz glass crucible is a low devitrification layer having a spot number of 2/cm3 or less when the quartz glass crucible is heated at 1600° C. for 24 hours. This provides a quartz glass crucible suppressed from deformation due to heating and excessive progression of devitrification.
摘要:
Provided is a silica glass disc in which the deformation amount thereof in heat treatment is minimized, and the surface area of a silica glass surface can be increased. There is provided a silica glass disc, including a dimple forming area in which a large number of dimples are formed on at least one of a front surface or a back surface of a silica glass body, and the dimples in the dimple forming area are regularly formed. It is preferred that the dimples be formed by a laser.
摘要:
Provided is a heat reflective member, which is prevented from braking even in a high-temperature environment. It generates no dust in use, and can be washed with a chemical liquid. The heat reflective member has a laminated structure in which quartz glass layers are formed on an upper surface and a lower surface of a siliceous sintered powder layer. The heat reflective member includes: an impermeable layer which is formed at a portion of the siliceous sintered powder layer at an end portion of the heat reflective member, which has a thickness at least larger than half of a thickness of the siliceous sintered powder layer, and through which a gas or a liquid is prevented from penetrating; and a buffer layer which is formed between the impermeable layer and the siliceous sintered powder layer, and which changes in density from the impermeable layer toward the sintered powder layer.
摘要:
Provided is a silica glass member for hermetic sealing of an ultraviolet SMD LED element to be suitably used for hermetic sealing of, and as a transmission window material for, a surface mount-type package (SMD) having an ultraviolet LED mounted thereon and configured to emit ultraviolet light in a wavelength range of from 200 nm to 350 nm. The silica glass member for hermetic sealing includes a silica glass substrate, which is homogeneously and integrally formed without an internal boundary, wherein the silica glass substrate has: a first surface on an inside opposed to an SMD LED element; and a second surface on an outside corresponding to the first surface, wherein an outer peripheral portion of the first surface has formed therein a substrate joining plain surface for joining to the container outer periphery joining plain surface, and wherein the second surface on the outside corresponding to the first surface has formed therein a lens-like convex portion configured to process emitted light from the ultraviolet SMD LED element.
摘要:
The present invention is a method for producing a quartz glass crucible for pulling a single crystal silicon from a silicon melt held therein, including the steps of: producing a quartz glass crucible having an outer layer including an opaque quartz glass containing bubbles therein and an inner layer including a transparent quartz glass containing substantially no bubbles; roughening a region of an inner surface of the produced quartz glass crucible, the region being in contact with the silicon melt when holding the silicon melt; and heating the quartz glass crucible having the roughened inner surface to crystallize a surface of the roughened region. This can produce a quartz glass crucible for pulling a single crystal silicon which can suppress generation of a brown ring on the inner surface of the crucible during pulling the single crystal silicon and can suppress crystallinity disorder of the single crystal silicon.
摘要:
The present invention is directed to a single-crystal silicon pulling silica container, the silica container including a straight body portion, a curved portion, and a bottom portion, wherein the OH group concentration in the straight body portion is 30 to 300 ppm by mass, the OH group concentration in the bottom portion is 30 ppm by mass or less, and the difference in the OH group concentration between the straight body portion and the bottom portion is 30 ppm by mass or more. As a result, a low-cost single-crystal silicon pulling silica container, the silica container that can reduce cavity defects called voids and pinholes in pulled single crystal silicon, is provided.
摘要:
Provided in a facile manner are a black synthetic quartz glass with a transparent layer, which meets demands for various shapes, has a black portion satisfying required light shield property and emissivity in an infrared region, keeps a purity equivalent to that of a synthetic quartz glass in terms of metal impurities, has a high-temperature viscosity characteristic comparable to that of a natural quartz glass, can be subjected to high-temperature processing such as welding, does not release carbon from its surface, and is free of bubbles and foreign matter in the transparent layer and the black quartz glass, and at an interface between the transparent layer and the black quartz glass, and a production method therefor.
摘要:
Producing a silica container includes forming a powder mixture by adding an Al compound or a crystal nucleating agent into a first powdered raw material; preliminarily molding to an intended shape by feeding the powder mixture to an inner wall of an outer frame while rotating the outer frame having aspiration holes; forming a silica substrate; and forming a transparent silica glass layer on an inner surface of the silica substrate, wherein the preliminarily molded article is degassed by aspiration from a peripheral side and heated from inside the preliminarily molded article at high temperature making a peripheral part of the preliminarily molded article to a sintered body while an inner part to a fused glass body, and a second powdered raw material having a higher silica purity than the first powdered raw material is spread from inside the silica substrate and heated from the inside at high temperature.
摘要:
A single-crystal silicon pulling silica container includes: a transparent layer made of transparent silica glass in an inner side of the silica container, and an opaque layer made of opaque silica glass containing gaseous bubbles in an outer side of the silica container, wherein the transparent layer is constituted of a high-OH group layer that is placed in an inner surface side of the silica container and contains the OH group at a concentration of 200 to 2000 ppm by mass and a low-OH group layer that has the OH group concentration lower than that of the high-OH group layer, and Ba is applied to the inner surface of the high-OH group layer at a concentration of 25 to 1000 μg/cm2.
摘要翻译:单晶硅拉硅石容器包括:在二氧化硅容器的内侧由透明石英玻璃制成的透明层和在二氧化硅容器的外侧含有气泡的不透明石英玻璃制成的不透明层,其中, 透明层由置于二氧化硅容器的内表面侧且含有浓度为200〜2000质量ppm的OH基和具有OH基的低-OH基层构成的高OH基层构成 浓度低于高-OH基团的浓度,Ba以25〜1000μg/ cm 2的浓度施加到高-OH基层的内表面。
摘要:
The present invention provides a single-crystal silicon pulling silica container including an outer layer made of opaque silica glass containing gaseous bubbles and an inner layer made of transparent silica glass that does not substantially contain the gaseous bubbles; the container also including: a bottom portion, a curved portion, and a straight body portion, wherein continuous grooves are formed on a surface of the inner layer from at least part of the bottom portion to at least part of the straight body portion through the curved portion. As a result, there are provided the single-crystal silicon pulling silica container that can reduce defects called voids or pinholes in the pulled single-crystal silicon and a method for manufacturing such a silica container.