Abstract:
An integral power steering apparatus includes a stroke limiter. A piston defines two hydraulic chambers in a housing. A communicating passage, a first valve disposed between the first hydraulic chamber and the communicating passage, and a second valve disposed between the second hydraulic chamber and the communicating passage, are provided to serve for a stroke limiter, in addition to a hydraulic circuit for supplying hydraulic fluid to the two hydraulic chambers. The two valves each include a valve body having a bore and serving as a valve seat, a plunger slidably fitted within the bore of the valve body and serving as a valving element, and a spring disposed on the bottom of the bore of the valve body and biasing the plunger to be in contact with the valve body.
Abstract:
A variable displacement pump includes a rear cover and side plate arranged on both sides of a cam ring and making slide contact with the cam ring. The rear cover has an end face on the side of the cam ring, which is formed with a suction port. A seal member is arranged in a chamber formed between a pump housing and the cam ring and for dividing the chamber into two portions that define first and second working chambers. A connection groove and terminal groove are formed in the end face of the rear cover to provide fluid communication between the suction port and the second working chamber.
Abstract:
A steering damper has a pair of damper portions each including a variable throttle valve for restricting inflow from a power cylinder into a flow passage change-over valve, the variable throttle valve provided on the way to each cylinder passage and a first check valve for permitting inflow from the flow passage change-over valve into the power cylinder, the check valve connected in parallel with the variable throttle valve. The steering damper has a second check valve in communication to a tank between the first check valve and left and right chambers of the power cylinder.
Abstract:
A cam ring 10 is slidably supported within a pump body 2, and a rotor 20 is rotatably disposed inside the cam ring. The cam ring is eccentric to a rotation shaft 22 of the rotor. The rotor carries a plurality of vanes 18 that can be advanced or retreated, in which a pump chamber 24 is formed in a space between the cam ring and the rotor. The cam ring is formed with the first and second fluid pressure chambers 14 and 16 on both sides thereof, and biased in a direction where the displacement of the pump chamber is at maximum by a spring 26. A control valve 28 is provided in which a differential pressure across a metering orifice is applied on both ends of a spool 32 and a spring 36 is disposed on the side of an end face where a downstream fluid pressure is applied. The fluid pressures of the fluid pressure chambers 14 and 16 are controlled by means of the control valve, whereby the cam ring is swung. A piston 58 that is moved in accordance with an increase in working pressure of a power steering apparatus is provided. This piston 58 exerts an axial thrust to an end face of the spool on the spring side.
Abstract:
A variable displacement pump includes a rear cover and side plate arranged on both sides of a cam ring and making slide contact with the cam ring. The rear cover has an end face on the side of the cam ring, which is formed with a suction port. A seal member is arranged in a chamber formed between a pump housing and the cam ring and for dividing the chamber into two portions that define first and second working chambers. A connection groove and terminal groove are formed in the end face of the rear cover to provide fluid communication between the suction port and the second working chamber.
Abstract:
Within a cam ring (8), a rotor having a plurality of vanes (27) is eccentrically disposed. A metering orifice (136) is provided halfway on a discharge passage (135) of pressure fluid discharged from the pump, and a control valve is activated due to a pressure difference between the upstream and downstream sides of the metering orifice (136). A fluid pressure of the first fluid pressure chamber (21) is controlled by activation of the control valve (123). The second fluid pressure chamber (22) is shut off from the control valve (123) to introduce a pressure on the suction side at any time. To return the cam ring (8) in a direction of expanding a pump chamber (11), an internal pressure of the cam ring (8) is applied in the return direction.
Abstract:
An integral power steering apparatus includes a stroke limiter. A piston defines two hydraulic chambers in a housing. A communicating passage, a first valve disposed between the first hydraulic chamber and the communicating passage, and a second valve disposed between the second hydraulic chamber and the communicating passage, are provided to serve for a stroke limiter, in addition to a hydraulic circuit for supplying hydraulic fluid to the two hydraulic chambers. The two valves each include a valve body having a bore and serving as a valve seat, a plunger slidably fitted within the bore of the valve body and serving as a valving element, and a spring disposed on the bottom of the bore of the valve body and biasing the plunger to be in contact with the valve body.
Abstract:
A cylinder device such as a power cylinder of a power steering system includes a slidable shaft slidably disposed inside a housing. A joint member is connected to the end section of the slidable shaft. A stopper member is disposed between the slidable shaft and the joint member. Here, the end section of the slidable shaft is cutout to form an axial engagement surface. The slidable shaft and the joint member are connected in a condition where the end face of the slidable shaft is in contact with the end face of the joint member so as to from a groove between the axial engagement surface and the joint member. The stopper member is formed annular and has an engagement section formed along its inner periphery. The engagement section is fitted in the groove so that the stopper member is prevented from at least an axial movement.
Abstract:
An electric power steering apparatus is disclosed. The apparatus features a first shaft and a second shaft connected by an elastic member. A first detecting member is coupled to the second shaft, and made of magnetic material with a plurality of radial notched portions defining a number of slots. A pair of second detecting members are coupled to the first shaft and positioned on both sides of the first detecting member, and made of conductive and non-magnetic material with a plurality of radial notched portions defining a like number of slots. A pair of detecting coils are axially positioned on both sides of a set of the first and second detecting members. A housing accommodates the first and second detecting members, the detecting coils, and holds yokes in a fixed position. The largest outer diameter of the first shaft is smaller than each of the inner diameters of the first detecting member, the second detecting member and the yokes, thereby improving the assembling of the electric power steering apparatus.
Abstract:
In steering control apparatus and method for an automotive vehicle, a camera photographs a travel path in a traveling direction of a vehicle, a lateral displacement calculating circuit calculates a lateral displacement of the vehicle with respect to the travel path according to an image of the travel path photographed by the camera, a differentiator calculates a differential value of the lateral displacement, a vehicle speed sensor that detects a vehicle speed, a relative yaw rate calculating section calculates a relative yaw rate with respect to the travel path of the vehicle on the basis of the lateral displacement, the differential value of the lateral displacement, and the vehicle speed, an actuator provides an assistance force for the steering mechanism, and an actuator controlling section drivingly controls the actuator in a direction toward which the relative yaw rate is cancelled on the basis of the relative yaw rate.