Abstract:
The invention relates to a dialysis cell for sample preparation for a chemical analysis method, in particular for ion chromatography. The dialysis cell comprises a donor channel and an acceptor channel extending parallel thereto. The donor channel and the acceptor channel are separated from each other by a selectively permeable dialysis membrane. In particular, an analyte that is dissolved in a donor solution in the donor channel can enter through the dialysis membrane into the acceptor solution in the acceptor channel. The acceptor channel has at least in some sections a volume that is smaller than the volume of the donor channel extending parallel thereto. Acceptor and donor channels are formed from half-cells, between which the dialysis membrane is arranged, wherein the donor channel and the acceptor channel are designed in each case as a recess in a contact surface of one of the half-cells with the dialysis membrane.
Abstract:
An electrochemical treating device having low scale potential is disclosed. The device has a variety of configurations directed to the layering of the anionic exchange and cationic exchange. The treatment device can also comprise unevenly sized ion exchange resin beads and/or have at least one compartment that provides a dominating resistance that results in a uniform current distribution throughout the apparatus.
Abstract:
The present invention relates generally to the deionization of liquids through the use of electrodeionization methods and apparatuses. The apparatuses may be configured to minimize the fouling of the electrode chambers and to provide continuous regeneration of the ion exchange materials. The apparatuses may be configured according to the desired levels of deionization for anions, cations, or both. Finally, methods are presented for various uses of the apparatuses.
Abstract:
One aspect of the present teachings includes a separation membrane arranged in a hollow case. A particular component concentration chamber and a particular component dilution chamber are arranged in series in the hollow case. The particular component concentration chamber is capable of increasing concentration of the particular component by allowing permeation of the particular gas through the separation membrane. The particular component dilution chamber is capable of increasing concentration of the particular component by not allowing permeation of the particular gas through the separation membrane. The particular component concentration chamber and the particular component dilution chamber are configured such that only a gas containing the particular component and permeated through the separation membrane or only a gas containing the particular component not permeated through the separation membrane in one of the chambers disposed on an upstream side (i.e., the side of the inlet port) can flow into the other of the chambers.
Abstract:
The present invention relates generally to the deionization of liquids through the use of electrodeionization methods and apparatuses. The apparatuses may be configured to minimize the fouling of the electrode chambers and to provide continuous regeneration of the ion exchange materials. The apparatuses may be configured according to the desired levels of deionization for anions, cations, or both. Finally, methods are presented for various uses of the apparatuses.
Abstract:
An electrolyzer inc;ides a receptacle having a chamber and an inlet port for receiving an electrolytic solution, one or more cathode plates and one or more anode plates disposed alternatively in the receptacle and separated from each other for forming flowing passages between the cathode plates and the anode plates, the cathode plates may generate and attract anolyte toward the cathode plate, and the anode plates may generate and attract catholyte toward the anode plate The receptacle two separated compartments communicating with the chamber of the receptacle, and a guiding device may effectively guide the catholyte and the anolyte to flow into the two compartments of the receptacle respectively.
Abstract:
An apparatus for the continuous electrochemical desalination of aqueous solutions includes a wound module having a central electrode, around which are wound an anion exchanger membrane and a cation exchanger membrane, and an outer counterelectrode. Each membrane is sealed at an inner edge thereof and at a outer edge by a respective clamping device, or are anchored in a synthetic resin block, in such a way that a dilution chamber and a concentrate chamber are defined. The dilution chamber and/or the concentrate chamber may contain an ion exchanger resin. The central electrode and the outer counterelectrode each may have a constriction over at least a part of the circumference thereof. The central electrode may furthermore have a recess for receiving the inner clamping device or the inner synthetic resin block in order to achieve a winding having as spiral a cross section as possible.
Abstract:
An electrochemical treating device having low scale potential is disclosed. The device has a variety of configurations directed to the layering of the anionic exchange and cationic exchange. The treatment device can also comprise unevenly sized ion exchange resin beads and/or have at least one compartment that provides a dominating resistance that results in a uniform current distribution throughout the apparatus.
Abstract:
A low energy water treatment system and method is provided. The system has at least one electrodialysis device that produces partially treated water and a brine byproduct, a softener, and at least one electrodeionization device. The partially treated water stream can be softened by the softener to reduce the likelihood of scale formation and to reduce energy consumption in the electrodeionization device, which produces water having target properties. At least a portion of the energy used by the electrodeionization device can be generated by concentration differences between the brine and seawater streams introduced into compartments thereof. The brine stream can also be used to regenerate the softener.
Abstract:
One aspect of the present teachings includes a separation membrane arranged in a hollow case. A particular component concentration chamber and a particular component dilution chamber are arranged in series in the hollow case. The particular component concentration chamber is capable of increasing concentration of the particular component by allowing permeation of the particular gas through the separation membrane. The particular component dilution chamber is capable of increasing concentration of the particular component by not allowing permeation of the particular gas through the separation membrane. The particular component concentration chamber and the particular component dilution chamber are configured such that only a gas containing the particular component and permeated through the separation membrane or only a gas containing the particular component not permeated through the separation membrane in one of the chambers disposed on an upstream side (i.e., the side of the inlet port) can flow into the other of the chambers.