Abstract:
A vertical centrifugal separator is provided which includes a mechanism for automatically discharging solids produced during centrifugal processing after the centrifugal processing. The vertical centrifugal separator includes a casing 4, a bowl 5 that is rotatably housed in the casing 4 and provided to separate a solution to be processed supplied to the inside of the bowl 5 into a liquid and a solid by the action of centrifugal force and to discharge the liquid and the solid, and a discharge assembly 6 that is rotatably housed in the bowl 5 and provided to discharge the solid in the bowl. The bowl and the discharge assembly each have an engagement portion being engaged or disengaged when the bowl and the discharge assembly are moved relative to each other in an axial direction and a position adjustment mechanism for adjusting the phase between the discharge assembly and the bowl relative to their rotation axis, for example, at a single relative position. When the solution to be processed is centrifuged, the bowl and the discharge assembly integrally rotate in an engagement state in which the phase adjusted by the position adjustment mechanism is held. The bowl and the discharge assembly are allowed to rotate relative to each other when the engagement state is released.
Abstract:
An improved centrifuge apparatus comprising a spindle with an affixed bowl and a drive shaft passing through the spindle with a plurality of scraper blades affixed which rotate within the bowl. The spindle is driven by a pulley with a belt attached to a motor. The centrifuge has a clutch mechanism which provides a positive lock to insure synchronous blade and bowl rotation during processing. The clutch mechanism comprises a shifting coupling attached to the drive shaft with a bottom set of teeth and a top set of teeth. The bottom set of teeth interlockingly engage a matching set of teeth located on either the pulley or the top of the spindle. The top set of teeth interlockingly engage a matching set of teeth that are either immovably attached to a plate or attached to a sprocket which is rotatably attached to the plate. The scraper blades have recesses in their front face to allow a variable cutting edge geometry and the mixing and matching of cutting edge geometry while permitting the use of the same base blade. The centrifuge has a tangential outlet and an annular housing to minimize spray and misting in the exiting centrifuged liquid.
Abstract:
The centrifugal separator (10) has a scraper (60) for peeling and separating the solid content (94) which is accumulated in the vicinity of the peripheral wall (28) of the container (16) in association with the rotation of the container (16). This scraper (60) is provided with a guide portion (62) which changes the flow of a liquid whirling in the annular space (32) in association with the rotation of the container (16) and allows the liquid to flow obliquely and downwardly onto the solid content (94).
Abstract:
A centrifugal separator system for substantially separating a combination of material into a substantially pure solid portion and a substantially pure liquid portion. In one form of the centrifugal separator a plow blade assembly is rotatable relative to a bowl during a cleaning mode to dislodge adhered material from the inner surface of the bowl. The plow blade assembly being driven by a plow blade assembly motor that is pivoted into engagement with the plow blade assembly. One form of the centrifugal separator has an integral top discharge feed impeller/directing member. The delivery of material into the centrifugal separator is through a self-centering feed tube positioned above the bowl. The plow blade assembly having a plurality of plow blades oriented tangential to the outer diameter of the plow blade drive shaft.
Abstract:
A centrifuge has a bowl, an opening at the center of the lower part of the bowl for supplying liquid to be treated and for discharging a centrifugally separated solids cake, and a tapered section configured so that the radius of the inner peripheral surface of the tapered section reduces downward toward the opening. Protrusions are provided at circumferential locations on the inner peripheral surface of the tapered section and protrude from the inner peripheral surface. A wing rotates within the bowl about the vertical axis and transports the separated solids cake toward the opening when rotating relative to the bowl. A drive mechanism moves the wing to a first height position and rotates the bowl and the wing together, or moves the wing to a second height position lower than the first height position and rotates the wing relative to the bowl.
Abstract:
An improved centrifuge apparatus comprising a spindle with an affixed bowl and a drive shaft passing through the spindle with a plurality of scraper blades affixed which rotate within the bowl. The spindle is driven by a pulley with a belt attached to a motor. The centrifuge has a clutch mechanism which provides a positive lock to insure synchronous blade and bowl rotation during processing. The clutch mechanism comprises a shifting coupling attached to the drive shaft with a bottom set of teeth and a top set of teeth. The bottom set of teeth interlockingly engage a matching set of teeth located on either the pulley or the top of the spindle. The top set of teeth interlockingly engage a matching set of teeth that are either immovably attached to a plate or attached to a sprocket which is rotatably attached to the plate. The scraper blades have recesses in their front face to allow a variable cutting edge geometry and the mixing and matching of cutting edge geometry while permitting the use of the same base blade. The centrifuge has a tangential outlet and an annular housing to minimize spray and misting in the exiting centrifuged liquid.
Abstract:
A centrifuge of the type including a housing and a rotatable bowl, and including a heating jacket located therebetween. The heating jacket is established through inflatable seals which selectively seal a space located between the bowl and the housing. The seals may be inflated when the bowl is stationary. A heating fluid is then introduced into the heating jacket so that collected solids in the bowl may be heated and dried. A vacuum may be applied to the bowl to assist in the removal of moisture from the solids. A scraper assembly, including at least one scraper, is disposed within the bowl. The scraper assembly pivots between a stowed position and an operative position to remove the solid that has collected on the inside wall surface of the bowl.
Abstract:
A scraper assembly for removing the collected solids component of a feed material from an interior wall surface of a centrifugal separator bowl comprises a supporting shaft positioned within the bowl along a vertically disposed longitudinal axis. The supporting shaft is pivotal between a stowed position and an operational position. At least two longitudinally spaced scraper blades are attached to the supporting shaft along the longitudinal axis and are adapted to contact the solids component when the support shaft is in the operational position. An upper scraper blade is angularly offset with respect to the lower scraper blade along the longitudinal axis so that any collected solids component removed by the upper scraper blade may freely drop clear of the lower scraper blade.