Abstract:
Cell separation systems and methods of separating cells are disclosed. In an embodiment, a cell separation system is described that comprises a non-transitory storage device that executes a centrifugation program to separate cell volume from biologic material volume; a heating mechanism; a containment mechanism; and an assembly comprised of a single-walled centrifugation bowl. In an embodiment, methods of separating cells are disclosed whereby cells are separated by agitating a volume of biologic material and a volume digestion media to form a digested volume of biologic material; centrifuging the digested volume of biologic material; removing a portion of a resulting waste via at least one fluid outlet; isolating a different portion of the waste, and removing the concentrated cell volumes from the reservoir.
Abstract:
The invention relates to a separator for separating solids from a water mixture, the separator comprising: a housing having a lid; and a centrifuge basket which is rotatably mounted in a centrifuge chamber of the housing and can be driven in rotation. The housing has a mixture inlet for the waste water mixture to be separated, which inlet opens into the centrifuge chamber, and a liquid outlet for liquid separated from the waste water mixture. An overflow opening is formed between the upper side of the centrifuge basket and the housing such that, during the centrifugal process, liquid can flow from the centrifuge basket into an outlet chamber which is connected to the liquid outlet. According to the invention, the centrifuge basket is designed such that, after the centrifugal process, solids which sink under the effect of gravity remain in the centrifuge basket.
Abstract:
Centrifugal contactors that can be used for mixing or separating materials are described. The contactors include a sensing system including a communications fiber within the shaft of the contactors and access ports providing access from the communications fiber to the mixing/separating zone of the contactor. The sensing system can be utilized during operation of the contactor and can provide for detailed and accurate on-line characterization of a protocol, as well as process control and system modification as necessary during operation.
Abstract:
A centrifugal field-flow fractionation device includes an annular rotor, an arc-shaped channel member, a rotation drive unit, and a restriction unit. A channel member 16 is provided along an inner peripheral surface of the rotor, has therein a channel 161 for a liquid sample by laminating a plurality of layers, and has an inlet for the liquid sample to the channel 161 and an outlet for the liquid sample from the channel 161. By rotating the rotor, particles in the liquid sample in the channel 161 are classified by centrifugal force. A restriction spacer 64 restricts the channel 161 from being compressed to a height less than a certain height when the channel member 16 is compressed and deformed in a laminating direction.
Abstract:
Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) and or platelet poor plasma (PPP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma into separate receivers while retaining the platelets and other factors in the centrifuge chamber. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
Abstract:
The invention provides an apparatus for separating components of a fluid stream comprising a first centrifugal separator and a further separator; the first centrifugal separator comprising: a support structure and a centrifugal separator unit rotatably mounted on the support structure so as to be rotatable about a rotational axis extending through the centrifugal separator unit; a drive element for driving rotation of the centrifugal separator unit; wherein the centrifugal separator unit comprises a centrifugal separation chamber having an inlet which is connected or connectable to a source of fluid requiring separation, a first outlet for collecting a higher density component of the fluid stream, and a second outlet for collecting a lower density component of the fluid stream; the first outlet being connected or connectable to a first collector for collecting the higher density component and the second outlet being connected or connectable to a second collector for collecting the lower density component.
Abstract:
A storage portion forming a storage space 10, includes an inclined inner wall portion 20 that is connected to a base portion so that the diameter of the inclined inner wall portion gradually decreases; a concave portion 22 is formed at a part of the inclined inner wall portion; and the concave portion 22 includes a concave portion side surface 22b that is connected to a concave portion bottom surface 22a. The concave portion 22 is formed at a position, where the concave portion crosses an interface S between the specimen centrifuged during rotation and air, in a radial direction with respect to the central axis; and the maximum width of the concave portion 22 in a circumferential direction around the central axis is included in a range of 2 mm to a length of 20% of the whole circumference.
Abstract:
A rotor bowl for use in a centrifugal concentrator for separating particulate material of higher specific gravity from a liquid slurry comprising a liquid and particulate material of different specific gravities, wherein the inner surface of the rotor bowl has an outwardly inclined migration surface and a capture zone above the migration surface, wherein the capture zone has a generally vertical annular wall located radially outwardly of the migration zone, and the generally vertical annular wall has a vibratory surface adapted to be selectively vibrated to thereby stratify particulate material or slurry located in contact with or adjacent to the vibratory surface within the capture zone to thereby permit the heavier concentrate to accumulate in the area closest to the wall of the capture zone. The vibratory surface may be the continuous inner liner of the capture zone, or separate vibrating surfaces may be provided on the surface of the inner liner in the capture zone.The vibratory motion may be provided by one or more vibrators mounted radially outwardly of each vibratory surface. The rotor bowl may also comprise a plurality of springs mounted on the outer periphery of the vibrators and which are each biased to bear against the outer surface of a vibrator to offset centrifugal force so that each vibrator is kept in contact with the vibrating surface during rotation of the hollow bowl.
Abstract:
A supercentrifuge with a non-intrusive device for the extraction of solids, the supercentrifuge comprising a chamber or rotor (1) for the clarification of liquids and a piston (4) located within the chamber passing through it in order to discharge the solids, the piston (4) being driven in its outward travel along the chamber (1) by the injection of a pressurised fluid which pushes the piston, in which the supercentrifuge has means for the generation of vacuum to bring about return movement of the piston along the chamber.
Abstract:
A centrifuge has a bowl, an opening at the center of the lower part of the bowl for supplying liquid to be treated and for discharging a centrifugally separated solids cake, and a tapered section configured so that the radius of the inner peripheral surface of the tapered section reduces downward toward the opening. Protrusions are provided at circumferential locations on the inner peripheral surface of the tapered section and protrude from the inner peripheral surface. A wing rotates within the bowl about the vertical axis and transports the separated solids cake toward the opening when rotating relative to the bowl. A drive mechanism moves the wing to a first height position and rotates the bowl and the wing together, or moves the wing to a second height position lower than the first height position and rotates the wing relative to the bowl.