Abstract:
A self-righting sailing vessel is described. The self-righting sailing vessel may determine the occurrence of several predetermined events, such as the self-righting sailing vessel capsizing, present or imminent inclement weather, and/or a present or imminent vessel or large marine animal. Upon detection of one of these events, the self-righting sailing vessel causes at least it's hull to become partially or completely submerged beneath the water. The self-righting sailing vessel is configured such that its rig is more buoyant than the rest of the vessel when the vessel is completely submerged beneath the water, causing the vessel to move towards an upright position while underwater. When the vessel is pointing towards an upright position, the vessel may begin ascending until it surfaces and is ready to continue sailing on top of the water.
Abstract:
A dynamic adaptive ballasting system for selectively positioning batteries within the hull of a watercraft. For pontoon boats, the ballasting system may be disposed in a pontoon log, for example a middle pontoon log disposed between two outer pontoon logs. The ballasting system enables the balance and weight distribution of the watercraft to be dynamically adjusted for enhanced stability and performance.
Abstract:
A tuned mass damper (TMD) system in combination with a floating offshore wind turbine (FOWT) platform includes a barge type FOWT platform having a hull configured to have a wind turbine tower mounted thereon. A TMD system is mounted in the hull and has a first TMD configured to operate at a first frequency, and a second TMD configured to operate at a second frequency different than the first frequency.
Abstract:
A boat may have a deck and a plurality of pontoons or hulls supporting the deck of the boat. The boat may include a starboard side pontoon, a port side pontoon, and possibly a middle pontoon. A positioning assembly may be provided with one or more of the foregoing pontoons. Each of the positioning assemblies may comprise a link assembly and an actuator provided to position the toon between the retracted position and the extended position. The boat may further include a leveling control system having a controller and a level sensor configured to detect an attitude of the deck, the controller in communication with the actuators and cause actuation of either or both of the actuators to extend or retract the port side toon and/or the starboard side toon based on data received from the level sensor indicative of the deck attitude.
Abstract:
A floating structure is described. The floating structure includes a floating platform disposed at a water surface, a mooring system and a dumping system. The mooring system is configured for mooring one side of the floating platform to a sea floor, thereby to permit rotation of the floating structure and to provide a desired orientation down-wind with respect to an anchor point. The dumping system is arranged at one side of the floating platform and is configured for absorbing wave energy and stresses imparted by the motion of waves in order to stabilize a horizontal position of the floating structure down-wind during a storm against the waves.
Abstract:
A method for operating floating vessel wherein the floating vessel comprises a hull having: a bottom surface, a top deck surface, at least two connected sections engaging between the bottom surface and the top deck surface, and at least one fin extending from the hull with an upper fin surface sloping towards the bottom surface and secured to and extending from the hull, the at least one fin configured to provide hydrodynamic performance. The at least two connected sections extend downwardly from the top deck surface toward the bottom surface. The at least two connected sections contain at least two of: an upper portion in section view with a sloping side extending from the top deck section, a cylindrical neck section in profile view, and a lower conical section in profile view with a sloping side extending from the cylindrical neck section.
Abstract:
A computer program for compensating for motion of a boat as it floats on water includes computer code for causing a processor to receive motion measurements of the boat floating on water relative to another element in an area surrounding the boat, and generate driving signals for driving actuators operatively associated between the boat and at least one carrier based on motion of the boat, wherein the actuators hold the at least one carrier substantially stationary relative to the element based on the driving signal.
Abstract:
Proposed is a floating platform structure for use on the surface of the ocean in equatorial regions where a strong eastward Cromwell current exists below the westward surface current. In the present invention, the forces developed by these two opposite currents are used for maintaining the floating structure in a stable geographical position that may be important, e.g., for launching a satellite-carrying rocket. The structure contains a rigid three-dimensional frame, which is immersed to the depth of the Cromwell current and carries floating bodies that experience the effect of the Cromwell current for counterbalancing the dragging force applied to the structure in the opposite direction from the surface current. Vertical positions of the floating bodies are adjustable by a mechanism, the operation of which is controlled on the basis of signals obtained from GPS, which locates the geographical position of the floating structure.
Abstract:
An offshore depot having a vertically symmetric hull, an upper inwardly-tapered wall and a lower outwardly-tapered wall that produce significant heave damping in response to heavy wave action. Ballast is added to the lower and outermost portions of the hull to lower the center of gravity below the center of buoyancy. The offshore depot includes a tunnel formed within or through the hull at the waterline that provides a sheltered area inside the hull for safe and easy launching/docking of boats and embarkation/debarkation of personnel. When the watertight tunnel doors are all shut, the tunnel may be drained to create a dry dock environment within the hull. The offshore depot includes berthing and dinning accommodations, medical facilities, workshops, machine shops, a heliport, and the like.
Abstract:
The invention described herein teaches that one drilling barge can be employed in two different areas. The standard drilling practice requires two vessels to perform the same work as one drilling barge invention. Standard drilling rigs require that one unit will drill well locations in water depths of 8′-18′. A second drilling unit must be provided to drill in water depths of 18′-60′. As a result of this invention, water depths of 8′-60′ can be provided by use of the one vessel employing the novel stabilization system. The service area's coverage is increased greatly by use of the invention thereby creating excellent cost reduction and improved drilling procedures in remote and harsh drilling areas. The invention's cost is slightly more than the standard drilling barge however; coverage of the service area can be 500% greater than the standard vessel's coverage.