Abstract:
Provided is a method for producing a separator which method less causes a tear in the separator. The method is a method for producing a separator by slitting, in a direction in which a separator original sheet (12b) being porous is conveyed, the separator original sheet (12b) into a plurality of separators (12a), including the steps of: (a) conveying the separator original sheet (12b) in a state where the separator original sheet (12b) is in contact with a roller (77); and (b) slitting the separator original sheet (12b) at a portion where the separator original sheet (12b) is in contact with the roller (77).
Abstract:
The invention relates to a roll making apparatus comprising spindles optionally having apertures for pressurized air and/or for applying a vacuum, the spindles being movable between a retracted position and an extended position; a roll engaging face configured to engage a roll carried by a spindle, upon the spindle carrying said roll moving to said retracted position, to move the roll relative to the spindle.
Abstract:
A label sheet cutting apparatus includes a first rotating shaft and a second rotating shaft arranged parallel to each other, a driving device configured to rotate the first rotating shaft and the second rotating shaft, and a cutter unit including a first disc-like rotary blade and a second disc-like rotary blade each having a hole in a center, and a holding member configured to rotatably support the first rotary blade and the second rotary blade, and hold one surface of the first rotary blade and one surface of the second rotary blade such that the two surfaces are partially in contact with each other, the cutter unit configured to cut a sheet-like medium to be cut which is fed to pass between the first rotary blade and the second rotary blade. The first rotating shaft and the second rotating shaft are inserted into the holes of the first rotary blade and the second rotary blade and rotate the first rotary blade and the second rotary blade, respectively, and support the cutter unit such that the cutter unit is movable in an axial direction of the first rotating shaft and the second rotating shaft.
Abstract:
A winding system having at least one winding device for winding up at least one ribbon-form material to be wound onto at least one exchangeable tube that is drivable in rotation about a winding axis, and having at least one feed device which is provided to supply the at least one ribbon-form material to be wound, comprising at least one deflecting unit which is provided to deflect the at least one ribbon-form material to be wound coming from the at least one feed device, during at least one winding-up operation, as said ribbon-form material to be wound travels to the at least one winding device, about at least one axis which extends at least substantially parallel to a direction of the gravitational force.
Abstract:
A mandrel cupping assembly for releasably engaging unsupported ends of a plurality of mandrels is disclosed. The mandrel cupping assembly comprises a cupping arm turret having a cupping arm turret central axis, a mandrel cup cooperatively associated with each mandrel of the plurality of mandrels, and a first actuator.
Abstract:
A mandrel cupping assembly for releasably engaging the unsupported ends of a plurality of mandrels disposed on a web winding turret assembly is disclosed. The mandrel cupping assembly comprises a cupping arm turret, a mandrel cup and cupping arm cooperatively associated with each mandrel, an outer ring guide disposed coaxially about the cupping arm turret, and a first actuator. Each of the mandrel cups and cupping arms are disposed radially about the cupping arm turret. The mandrel cups releasably engage the unsupported end of the mandrel against the outer ring guide. The mandrel cups have a hold-open position and a hold-closed position and are carried in a radial orbital path about the cupping arm turret while disposed in either of the hold-open position or the hold-closed position. The first actuator disposes each of the mandrel cups and cupping arms from the hold-open position to the hold-closed position.
Abstract:
A system and process is described for producing spirally wound products. According to the process of the present disclosure, two or more webs are conveyed together in a superimposed relationship. The webs are then separated such that one web goes to a first winding module while a second web goes to a second winding module, etc. In this manner, at least two spirally wound products can be produced simultaneously. The process and system of the present disclosure are particularly well suited for processing tissue webs, such as paper towels and bath tissue. The process of the present disclosure can effectively at least double throughput on existing winding systems.
Abstract:
A slitting machine includes a stand for supporting a web which is slit into multiple ribbons by a plurality of blades, with the ribbons being wound on corresponding cores supported on an arbor. A common ink roller is mounted across the feedpath of the web and has a printing surface configured to print an end-of-roll warning stripe in a universal pattern bridging adjacent ribbons irrespective of individual width thereof.
Abstract:
A web winding apparatus comprises one or more wind mandrels (3) each supported for rotation about its central axis, and a core forming apparatus (1) for forming a core on the or on each mandrel (3) in turn from a continuous web (5) of gummed material. The core forming apparatus (1) comprises means (6) for presenting the free end of the continuous web (5) to a winding mandrel (3), means for rotating the winding mandrel about its central axis to cause the web (5) to wrap around the winding mandrel (3), means (10) for applying water to the web (10) to activate the adhesive and thereby bond together the layers of paper wrapped on the winding mandrel (3) and means for cutting the continuous web from the core when the core has reached a predetermined diameter.
Abstract:
Process and device for continuously winding a plurality of longitudinally cut paper webs at machine speed by using a device that includes support rollers and at least one pair of disks associated with each of the support rollers, such that the at least one pair of disks is arranged concentrically with and rotates independently of, its associated support roller. The at least one pair of disks includes a first winding device having a first cardboard tube disposed thereon and a second winding device having a second cardboard tube disposed thereon, such that each of the support rollers include at least one of the pair of disks, which are concentrically arranged with and which rotate independently of the support rollers. The process includes axially adjusting the disks of the at least one pair of disks to correspond to a width of web to be wound, positioning the pair of disks in a first position, attaching a first end of the web onto the first cardboard tube, and running a pair of supporting rollers and the first cardboard tube up to a machine speed thereby winding the web onto the first cardboard tube. The process also includes turning the pair of disks to a second position, accelerating the second cardboard tube up to machine speed, cutting the paper web transversely to a web run direction when a desired winding diameter is achieved on the first cardboard tube thereby producing a second end, and winding the second end of the web onto the second cardboard tube. Moreover, the process includes turning the pair of disks to a third position, stopping the rotation of the first cardboard tube, removing the paper web wound onto the first cardboard tube from the first winding device, and disposing a third cardboard tube onto the first winding device.