Abstract:
A method and heave compensator for eliminating snap-load and heave effects at offshore deposition of a load into or onto the sea or seabed involves a heave compensator suspended between the load and the lifting device having a relatively stiff stroke response at small to moderate stroke lengths and then a softer stroke response at larger stroke lengths to avoid exceeding the dynamical amplification factor (DAF)-limitations of the crane/lifting device or on the load.
Abstract:
The present invention relates to a motion compensation system for an element hanging from a mobile unit, the system comprising two blocks, at least two articulated arms, a compensation cylinder and a cable. According to the invention, at least one characteristic length of the articulated system (for example: the length of a link or the distance between two sheaves of two articulated arms) is adjusted according to the motion to be compensated for.
Abstract:
A method for lift compensation of an item (12) which is connected to a vessel (1) by means of a rope (4) which is coiled around the rope drum (6) of a lifting device (2), the lifting device (2) being provided with a heave compensator (20), a controller (30) of the heave compensator (20) controlling the effect of the driving device (32, 34, 42) of the rope drum (6) on the basis of a heave term and a deviation term, the method comprising: —bringing a correction term into the heave compensation when, because of environmental forces, the force on the rope (4) falls outside a first limit (d, e); and—leaving the correction term out when the force on the rope (4) is within a second limit (c, f), the second limit (c, f) being equal to or different from the first limit (d, e).
Abstract:
An offshore, deep-water crane including a support structure, a lifting arm secured to the support structure and extending therefrom, and at least one lifting rope extending from the support structure towards an end of the lifting arm remote from the support structure is disclosed. The lifting rope has a specific gravity less than 3 and a traction winch for moving the at least one lifting rope from the support structure along the arm and vice versa.
Abstract:
A heave motion compensator (30, 40, 70, 100, 140, 300) for compensating heave motions comprises a cylinder (41) and a piston (44) delimiting a variable volume fluid chamber (49) in said cylinder (41), wherein said piston (44) can oscillate within said cylinder (41), said piston (44) being provided with a seal (48) frictionally engaging said cylinder. The compensator further includes a motor (65) that causes said seal (48) to revolve relative to said cylinder (41) so as to obtain a dynamic friction regime between the seal (48) and the cylinder (41). In a possible embodiment the motor (65) is arranged to rotate said piston (44), and the seal (48) is mounted on said piston (44) so as to rotate along with said piston (44).
Abstract:
Apparatus and methods for operating a winch system comprising a wire spooled onto a drum rotatably mounted to a shaft. A permanent magnet is mounted to the drum such that, when an electric current is applied to a coiled winding mounted to the shaft, the drum rotates about the shaft. The winch comprises a first braking system that controls the rotation of the drum about the shaft by controlling the application of the electric current to the coiled winding. The winch also comprises a second braking system that mechanically engages the drum so as to prevent the rotation of the drum about the shaft. The winch is used in conjunction with a control system that facilitates the use of the winch with lifting and supporting personnel working in elevated environments.
Abstract:
The instant invention is directed to a active-over-passive coordinated motion winch designed to be used in combination with a class of existing offshore lifting systems such as A-Frames, booms or cranes to minimize the relative movement between a payload position and a destination position occurring commonly in offshore operations. The configuration of this system allows a remote operated vehicle (ROV) or any other launched load to be firmly captured until it is delivered to the desired destination. The configuration of the system also permits towed loads, such as sonar devices, to closely maintain level tow paths along the sea floor.
Abstract:
A system or apparatus and method for retrieving cable from water during marine operations is provided that reduces damage to the cable from pulling forces during the retrieval. A pulling device distributes the forces and stresses all along the cable components. In one embodiment, the pulling drive comprises a pulling drum powered by a clutching system or by a hydraulic torque conversion system set to slip or stall at a selectable force value. The apparatus may use a see-saw action to maintain the forces below damaging levels. The system may be adapted for deploying cable in marine operations as well.
Abstract:
This invention is drawn to a device for transporting cargo between a source position and a destination position utilizing a fixed crane-type device, e.g. an A-Frame, including a pivotal sub A-Frame in conjunction with a heave compensating assembly to which a main lifting cable is attached. The bulk of the lifting capacity is derived from a primary power source mechanically linked to the main lifting cable. As the source and destination positions move relative to each other, compensation for this motion is obtained via the coordinated reciprocal movement of an extensible connector, e.g. a wire rope and a lifting device mechanically linked between the main A-Frame and sub A-Frame, which is operative in response to sensory data input to the power unit's controller. The coordinated reciprocal motion acts to adjust the instantaneous load position thereby neutralizing the relative movement between the source position and destination position. The direct compensation provided by the interaction of the sub A-Frame, extensible connector and lifting device assembly provide enhanced neutralization of relative movement in either an active or passively controlled environment.
Abstract:
A communication arrangement between a sub-sea structure and a surface vessel is by a flexible control umbilical deployed from the vessel in such a way as to accommodate relative movement between the structure and vessel. Unpredictably excessive movements can risk breakage of the umbilical, causing damage to equipment controlled by it and `down-time` while the equipment is repaired and the umbilical replaced. In the present invention (FIG. 2) the umbilical 13 is suspended from a reel 20 of deployment means 14, which is braked to resist motion below a predetermined level of umbilical tension but above that level the braking is overcome enabling the deployed umbilical to draw off, and deploy, a further length 13' while the communication channels of the umbilical are shut-down, including powering-down any sub-sea equipment in controlled manner. If, subsequently, the further length of umbilical is all deployed, or optionally, the umbilical tension exceeds a second predetermined tension, umbilical coupling means 28, at which the umbilical is coupled to the vessel system, is released at the coupling point to fall into the sea to be recovered and re-coupled when conditions permit.