摘要:
An electromechanical transducer element includes a first electrode, a second electrode, and a piezoelectric material. The piezoelectric material is disposed between the first electrode and the second electrode and deformable with a voltage applied in accordance with a drive signal. The piezoelectric material is made of a composite oxide having a perovskite structure preferentially oriented in at least one of a (100) plane and a (001) plane. A drop in diffraction intensity is included in a rocking curve corresponding to at least one of a (200) plane and a (002) plane measured at a position of 2θ where the diffraction intensity is largest at a peak of diffraction intensity corresponding to the (200) plane out of peaks of diffraction intensity measured by an X-ray diffraction θ-2θ method.
摘要:
A preparation method and use of a green fluorescent transparent ceramic are disclosed. The preparation method includes: weighing, according to a stoichiometric ratio, elements present in Ca3-x-yCexAySc2-xBzSi3-mCmO12, in forms of oxides, carbonates or nitrates as raw materials; mixing the raw materials, annealing, melting at a high temperature, cooling and annealing at a low temperature; putting the glass into a high-temperature furnace, holding, raising the temperature, and performing crystallization and densification sintering; finally cutting, reducing and surface-polishing, where A is at least one from the group consisting of Lu, Y, Gd, La and Na; B is at least one from the group consisting of Zr, Hf and Mg; C is at least one from the group consisting of Al and P; x, y, z and m satisfy 0.001≤x≤0.06, 0≤y≤0.06, 0≤z≤0.06 and 0≤m≤0.3, respectively.
摘要:
An electromechanical transducer element includes a first electrode, a second electrode, and a piezoelectric material. The piezoelectric material is disposed between the first electrode and the second electrode and deformable with a voltage applied in accordance with a drive signal. The piezoelectric material is made of a composite oxide having a perovskite structure preferentially oriented in at least one of a (100) plane and a (001) plane. A drop in diffraction intensity is included in a rocking curve corresponding to at least one of a (200) plane and a (002) plane measured at a position of 2θ where the diffraction intensity is largest at a peak of diffraction intensity corresponding to the (200) plane out of peaks of diffraction intensity measured by an X-ray diffraction 0-20 method.
摘要:
In some examples, a technique for forming a partially densified preform including ceramic particles may include mixing a densifying agent with metal oxide particles or metal oxide precursor to form a blended densifying agent, infiltrating the blended densifying agent in to a porous preform, pyrolyzing the infiltrated preform to convert the densifying agent to carbon and form a partially densified preform, and heat treating the partially densified preform to react at least some of the carbon with the metal oxide particles to form ceramic particles. Composite materials formed from porous preforms in which a blended densifying agent is disposed in pores of the preform are also described.
摘要:
A sensor element for an exhaust gas sensor includes a ceramic base body whose surface includes at least one surface region that is electrically insulating, the sensor element including at least one flat guide structure, which is electrically conductive, along the surface region of the base body. The guide structure is partially embedded in the base body in a direction perpendicular to the surface.
摘要:
In some examples, a technique for forming a partially densified preform including ceramic particles may include mixing a densifying agent with metal oxide particles or metal oxide precursor to form a blended densifying agent, infiltrating the blended densifying agent in to a porous preform, pyrolyzing the infiltrated preform to convert the densifying agent to carbon and form a partially densified preform, and heat treating the partially densified preform to react at least some of the carbon with the metal oxide particles to form ceramic particles. Composite materials formed from porous preforms in which a blended densifying agent is disposed in pores of the preform are also described.