Abstract:
The present invention relates to insulin and/or an insulin analogue conjugate, and a use thereof, wherein the insulin and/or insulin analogue have improved in vivo durability and stability by linking the same with an Fe region of immunoglobulin. The insulin and/or an insulin analogue conjugate of the present invention show an in vivo activity similar to that of insulin. In addition, the insulin and/or insulin analogue conjugate of the present invention are long-acting formulations of insulin and/or the analogue thereof, in which serum half-life is remarkably increased, and therefore, the present invention provides remarkable insulin and/or an insulin analogue conjugate, which do not induce hypoglycemia, a drawback of insulin treatment.
Abstract:
The invention relates to multimeric fusion proteins which bind to human Fc receptors. The invention also relates to therapeutic compositions comprising the proteins, and their use in the treatment of immune disorders.
Abstract:
The present invention relates to a method of producing a modified protein having an increased stability and/or improved folding efficiency as compared to the unmodified protein, the method comprising (i) modifying a nucleic acid molecule encoding a protein comprising at least one immunoglobulin constant domain-like region by (a-i) replacing the nucleotides encoding at least one amino acid, preferably an uncharged amino acid, in the loop separating the C strand from the D strand with nucleotides encoding a charged amino acid selected from the group consisting of Arg, Lys, His, Glu and Asp and/or replacing the nucleotides encoding at least one amino acid, preferably an uncharged amino acid, in the helix connecting the E strand with the F strand with nucleotides encoding a charged amino acid selected from the group consisting of Arg, Lys, His, Glu and Asp; (a-ii) replacing the nucleotides encoding at least one amino acid not having a side chain that can form a hydrogen bond in the loop separating the C strand from the D strand with nucleotides encoding an amino acid having a side chain capable of forming a hydrogen bond selected from the group consisting of Gln, Asn, Tyr, Ser and Thr and/or replacing the nucleotides encoding at least one amino acid not having a side chain that can form a hydrogen bond in the helix connecting the E strand with the F strand with nucleotides encoding an amino acid having a side chain capable of forming a hydrogen bond selected from the group consisting of Gln, Asn, Tyr, Ser and Thr; and/or (a-iii) replacing the nucleotides encoding at least one amino acid in the loop separating the C strand from the D strand with nucleotides encoding a cysteine and/or replacing the nucleotides encoding at least one amino acid in the helix connecting the E strand with the F strand with nucleotides encoding a cysteine; and/or (b) replacing the nucleotides encoding at least one non-hydrophobic amino acid at a position suitable to participate in the formation of the hydrophobic core with nucleotides encoding a hydrophobic amino acid selected from the group consisting of Val, Ile, Leu, Met, Phe, Trp and Pro; and (ii) expressing the nucleic acid molecule to produce the stabilised protein. The present invention further relates to a method of producing a modified protein having an improved secretion from cells as compared to the unmodified protein, as well as to a protein comprising at least one immunoglobulin constant domain-like region having an additional salt bridge, an additional hydrogen bond, an additional disulfide bridge and/or an extended hydrophobic core. The present invention further relates to a nucleic acid molecule encoding the modified protein of the invention, as well as a vector comprising said nucleic acid molecule and a host cell comprising the vector. Further, the present invention relates also to a composition as well as to a kit.
Abstract:
The present invention concerns binding molecules having a penta- or hexameric ring structure, such as for example, isolated IgM antibodies with five or six bispecific binding units, and methods and means for making and using the same. The invention further concerns multi-specific binding molecules having a penta- or hexameric ring structure, such as, for example, isolated IgM antibodies with five or six bispecific binding units, and methods and means for making and using the same.
Abstract:
Embodiments of the invention are related to a polypeptide comprising the amino acid sequence of a human IgE-Fc Cε3-Cε4, wherein said Cε3-Cε4 starts at amino acid 328 and ends at amino acid 547 of said IgE-Fc, and wherein C 328 is A and K 367 is C. Other embodiments concern a second polypeptide comprising the amino acid sequence of a human FcεRIα extracellular region, wherein said extracellular region starts at amino acid 1 and ends at amino acid 176 of said FcεRIα. Still other embodiments are related to a method of identifying a compound that inhibits the binding of an IgE-Fc to a FcεRIα, said method comprising: contacting the polypeptide, wherein said IgE-Fc Cε3-Cε4 sequence is labeled with a fluorophore, and the second polypeptide, with a test compound; and determining whether binding of said polypeptide to said second polypeptide is decreased in the presence of said test compound.
Abstract translation:本发明的实施方案涉及包含人IgE-Fc C 3'和C 3的氨基酸序列的多肽,其中所述C 3和C 4的氨基酸序列从氨基酸328开始,并在所述 IgE-Fc,其中C 328为A且K 367为C.其他实施方案涉及包含人FcγRI胞外区的氨基酸序列的第二多肽,其中所述胞外区起始于氨基酸1并以氨基酸结束 176的所述FcγRIα。 还有其它实施方案涉及鉴定抑制IgE-Fc与FcγRIα结合的化合物的方法,所述方法包括:使所述多肽接触,其中所述IgE-Fc C 3 -C 8序列被标记 用荧光团和第二多肽与测试化合物反应; 以及在所述测试化合物的存在下确定所述多肽与所述第二多肽的结合是否降低。
Abstract:
The present invention relates to the provision of novel immunogens comprising an antigenic IgE peptide preferably linked to an immunogenic carrier, compositions comprising the immunogens, and methods for the prevention, treatment or alleviation of IgE-mediated disorders. The invention further relates to methods for production of these medicaments, immunogenic compositions and pharmaceutical compositing thereof and their use in medicine.
Abstract:
IVIG replacement compounds are derived from recombinant and/or biochemical creation of immunologically active biomimetic(s). These replacement compounds are then screened in vitro to assess each replacements compound's efficiency at modulating immune function. Particular replacement compounds are selected for further in vivo validation and dosage/administration optimization. Finally, the replacement compounds are used to treat a wide range of diseases, including inflammatory and autoimmune diseases.
Abstract:
Antibodies which bind an antigen of the bone marrow neovasculature in leukaemia patients, for use in treatment and diagnosis of leukaemia, in particular the treatment and diagnosis of acute myeloid leukaemia (AML).
Abstract:
This disclosure provides a method of preventing, alleviating or treating a condition (i.e., neutropenia) in a subject in need thereof, the condition characterized by compromised white blood cell production in the subject. The method includes administering to the subject a therapeutically effective amount of a protein complex on the same day as a chemotherapy regimen, wherein the protein complex is a modified human granulocyte-colony stimulating factor (hG-CSF) covalently linked to an immunoglobulin Fc region via a non-peptidyl polymer. The non-peptidyl polymer is site-specifically linked to an N-terminus of the immunoglobulin Fc region, and the modified hG-CSF comprises substitutions in at least one of Cys17 and Pro65.
Abstract:
This disclosure provides a method of preventing, alleviating or treating a condition (i.e., neutropenia) in a subject in need thereof, the condition characterized by compromised white blood cell production in the subject. The method includes administering to the subject a therapeutically effective amount of a protein complex on the same day as a chemotherapy regimen, wherein the protein complex is a modified human granulocyte-colony stimulating factor (hG-CSF) covalently linked to an immunoglobulin Fc region via a non-peptidyl polymer. The non-peptidyl polymer is site-specifically linked to an N-terminus of the immunoglobulin Fc region, and the modified hG-CSF comprises substitutions in at least one of Cys17 and Pro65.