Abstract:
A method for making a dispersible nonwoven sheet generally comprises dispersing natural fibers and regenerated fibers in a ratio of about 70 to about 90 percent by weight natural fibers and about 10 to about 30 percent by weight regenerated fibers in a liquid medium to form a liquid suspension. The liquid suspension is deposited over a foraminous forming wire to form a nonwoven tissue web. The nonwoven tissue web is sprayed with a first plurality of jets. Each jet of the first plurality of jets is spaced from an adjacent one of the first plurality of jets by a first distance. The nonwoven tissue web also is sprayed with a second plurality of jets. Each jet of the second plurality of jets is spaced from an adjacent one of the second plurality of jets by a second distance, and the second distance is less than the first distance. The nonwoven tissue web is dried to form the dispersible nonwoven sheet.
Abstract:
A method for making a dispersible nonwoven sheet generally comprises dispersing natural fibers and regenerated fibers in a ratio of about 70 to about 90 percent by weight natural fibers and about 10 to about 30 percent by weight regenerated fibers in a liquid medium to form a liquid suspension. The liquid suspension is deposited over a foraminous forming wire to form a nonwoven tissue web. The nonwoven tissue web is sprayed with a first plurality of jets. Each jet of the first plurality of jets is spaced from an adjacent one of the first plurality of jets by a first distance. The nonwoven tissue web also is sprayed with a second plurality of jets. Each jet of the second plurality of jets is spaced from an adjacent one of the second plurality of jets by a second distance, and the second distance is less than the first distance. The nonwoven tissue web is dried to form the dispersible nonwoven sheet.
Abstract:
A method for washing of the present invention, comprises: a turbo wash setting step of setting turbo wash for spraying water into a drum through a spiral nozzle, when laundry rotates while being attached to the drum by a rotation of the drum; a continuous water supply step of supplying water into a tub; and a regular washing step of canceling the turbo wash when a time taken for a water level inside the tub to reach a target level is longer than a target time so that the water is not sprayed through the spiral nozzle when the laundry rotates while being attached to the drum by the rotation of the drum.
Abstract:
A washing machine of the present invention comprises a casing; a tub disposed inside the casing; a drum rotatably provided inside the tub, for accommodating laundry therein; and a gasket interposed between the casing and the tub, for preventing water in the tub from leaking between the tub and the casing. Wherein the gasket comprises a plurality of gasket nozzles for spraying water into the drum; and a plurality of connectors for supplying water to the respective gasket nozzles. Wherein the gasket nozzle comprises a spray guidance surface for refracting the an advancing direction of the water supplied through the connector so as to spray the water toward inside of the drum; and a plurality of protrusions provided adjacent to an finish end of the spray guidance surface on which the water guided along the spray guidance surface is separated, and arranged along an width direction of the spray guidance surface.
Abstract:
A dispensing vessel for introducing moisture into a clothes drying environment includes a core and a cover substantially surrounding the core. The core is configured to at least temporarily retain a moistening substance therein. The cover includes a plurality of protuberances sized and dimensioned to lift and separate individual clothing articles when the dispensing vessel is disposed within a clothes drying environment with clothing articles. Each protuberance includes a flattened tip at a distal end thereof, a fill opening defined therethrough to provide access to an interior of the cover from an exterior of the cover, and one or more dispensing openings. Each dispensing opening is disposed at the flattened tip of a respective protuberance of the plurality of protuberances and provides access to an exterior of the cover from an interior of the cover.
Abstract:
A dispensing vessel for introducing moisture into a clothes drying environment includes a core configured to at least temporarily retain a moistening substance therein and a cover substantially surrounding the core. The cover includes a plurality of protuberances, each protuberance including a flattened tip at a distal end thereof, a fill opening defined therethrough, the fill opening providing access to an interior of the cover from an exterior of the cover, and one or more dispensing openings, each dispensing opening being disposed at the flattened tip of a protuberance of the plurality of protuberances, each dispensing opening providing access to an exterior of the cover from an interior of the cover.
Abstract:
An apparatus for applying a liquid dye to a textile web moving continuously in a predetermined direction has a tubular applicator housing defining a substantially closed chamber formed with an outlet slot extending a full length of the chamber transverse to the direction and a removable cover strip formed with an elongated array of throughgoing holes fitted to the slot. A receptacle holding the liquid dye is connected between the receptacle and the chamber for pressurizing the chamber with the dye. The closed chamber is centered on an axis and the housing forms a second chamber that is annular and coaxially surrounds the first-mentioned chamber. The housing also forms a second outlet slot extending a full length of the housing parallel to and offset from the first-mentioned slot. The supply is also connected to this second chamber.
Abstract:
A coater for applying foamed coating material to a traveling textile substrate including a frame, a flush pan, an applicator having an open slot, a pivot shaft journaled in a pair of support arms that are pivotally mounted to the frame and piston-cylinder mechanisms to move the applicator between an operating position wherein the open slot is adjacent the traveling substrate and a flush position wherein the open slot is adjacent the flush pan by pivoting the support arms and rotating the pivot shaft. Foamed coating material is applied by supporting the traveling substrate between two spaced support elements, contacting the traveling substrate with a foam applicator, and forcing a metered amount of foamed material at least partially into the interstices of the textile substrate before the foamed coating material collapses. A metered amount of foamed coating material is applied onto or into a textile substrate regardless of textile substrate structure and regardless of the viscosity of the coating material. The foamed coating material may be flushed from the coater by stopping flow of foamed material through the applicator, moving the applicator to the flush position, and commencing flow of a flushing fluid through the applicator and into the flush pan. Foamed coating material may also be flushed from the applicator by stopping flow of foamed material through the applicator, commencing flow of a flushing foam through the applicator, stopping flow of flushing foam through the applicator, and commencing flow of a flushing fluid through the applicator.
Abstract:
A method of coating a substrate comprises immersing a surface portion of a substrate in a liquid or supercritical first phase. The first phase comprises carbon dioxide and a coating component such as a polymer. The substrate is then withdrawn from the first phase into a distinct second phase such as a gas atmosphere so that the coating component is deposited on said surface portion. The withdrawal step is followed by separating the carbon dioxide from the coating component (e.g., by evaporation, venting, heating, etc.) so that the coating component is retained as a coating layer formed on the surface portion. Apparatus for carrying out the method by free meniscus coating, or employing a metering element such as a knife, blade, or roll, are also disclosed.
Abstract:
A method of coating a substrate comprises immersing a surface portion of a substrate in a first phase comprising carbon dioxide and a coating component comprising a polymeric precursor; then withdrawing the substrate from the first phase into a distinct second phase so that the coating component is deposited on the surface portion; and then subjecting the substrate to conditions sufficient to polymerize the polymeric precursor and form a polymerized coating.