Abstract:
A system for controlling an engagement of a material supply machine with a paving machine is provided. The system includes one or more sensor(s) mounted on material supply machine and/or the paving machine and are configured to detect a position and distance of paving machine with respect to material supply machine. The sensor(s) further detect a relative speed between the two machines. A controller autonomously controls speed of material supply machine based on detected relative speed when distance is less than threshold. The speed of material supply machine is controlled to match speed of the paving machine. The controller also autonomously controls steering of material supply machine based on detected position of leading end of paving machine to align material supply machine with leading end of paving machine until the material supply machine engages with leading end of paving machine.
Abstract:
A material transfer vehicle includes a material receiving device that is adapted to receive asphalt paving material, and a receiving conveyor that is operatively attached to the material receiving device. The receiving conveyor is driven by a chain drive assembly and includes a chain tension adjustment assembly. The receiving conveyor is pivotable about a substantially horizontal axis so that it can be moved between a transport configuration in which the material receiving device is raised, an intermediate adjustment configuration, and a working configuration in which the material receiving device is lowered. A housing structure encloses protected components and includes an opening adjacent to the protected components. A combination door and platform is attached to the housing structure and is adapted to be moved between a closed configuration that covers the opening and an open configuration that provides access to the protected components, and also provides a platform on which an operator can stand to access the chain tension adjustment assembly.
Abstract:
A hopper insert is provided for an asphalt paving machine. The hopper insert has an outlet which has first and second lateral outlet opening edges which converge toward each other from front to rear along at least a majority of the outlet length.
Abstract:
A system and method for automatically controlling the flow of asphalt material from a truck-unloading hopper of a material transfer vehicle into the entry end of an adjacent truck-unloading conveyor in order to optimize at least one vehicle operating parameter includes a baffle mounted to the truck-unloading hopper adjacent to the entry end of the truck-unloading conveyor. The baffle is adapted to increase or decrease the hopper opening into the truck-unloading conveyor. A controller is operatively connected to the baffle and adapted to cause the baffle to increase or decrease the hopper opening into the truck-unloading conveyor. A sensor is provided for detecting at least one vehicle operating parameter. This sensor is operatively connected to the controller so that changes in the at least one vehicle operating parameter can be communicated to the controller. The controller is adapted to control the flow rate of asphalt material into the truck-unloading hopper in order to optimize the at least one vehicle operating parameter.
Abstract:
In accordance with example embodiments, a system may include a first feeder configured to transport asphalt, a second feeder configured to receive the asphalt from the first feeder, and a controller configured to control a speed of the first feeder and the second feeder in response to an input from an operator.
Abstract:
A system and method for automatically controlling the flow of asphalt material from a truck-unloading hopper of a material transfer vehicle into the entry end of an adjacent truck-unloading conveyor in order to optimize at least one vehicle operating parameter includes a baffle mounted to the truck-unloading hopper adjacent to the entry end of the truck-unloading conveyor. The baffle is adapted to increase or decrease the hopper opening into the truck-unloading conveyor. A controller is operatively connected to the baffle and adapted to cause the baffle to increase or decrease the hopper opening into the truck-unloading conveyor. A sensor is provided for detecting at least one vehicle operating parameter. This sensor is operatively connected to the controller so that changes in the at least one vehicle operating parameter can be communicated to the controller. The controller is adapted to control the flow rate of asphalt material into the truck-unloading hopper in order to optimize the at least one vehicle operating parameter.
Abstract:
The invention relates to a conveyor belt mounting for a charger that is used in road building, in order to supply a road-finishing machine with paving material. Using the slewing belt mounting, it is possible to achieve different discharge heights for the paving material. The slewing belt mounting comprises a cantilever arm, which is movably mounted on the frame of the charger, a pivot arm, which is pivotally connected to the cantilever arm, and a conveyor belt, which is connected to the pivot arm. The slewing belt mounting is characterized in that it comprises at least one lifting element, such as a hydraulic cylinder, cable winch, toothed rack, gear mechanism or the like, which is fastened by a first end to the frame and by a second end to the cantilever arm, wherein the cantilever arm is vertically adjustable by means of the lifting element.
Abstract:
The invention relates to a feeder (B) for conveying paving mixture to a road paver, whereby the feeder has a plurality of working assemblies (M, Q, 5, 10) and a control area (12). According to the invention an automatic mode can be set in the control area (12) for at least one of the working assemblies, and a conveyor main switch (15) is provided upon operation of which all assemblies set to automatic mode are activated with predetermined operating parameters.
Abstract:
A multi-use asphalt paving tractor with frame raise capability and a blind-mateable connector to facilitate quick connection with interchangeable attachments for performing the functions of a paver, a mix transfer conveyor and road widener.
Abstract:
A paving material machine having a frame with an end-to-end tunnel for paving material capacity. The machine also includes an electro-hydraulic drive system using rotary transducers. In a configuration for laying down paving material, the machine has a front hopper for receiving paving material from trucks and a conveyor to transfer paving material rearward through the tunnel. A diverter plate and feed augers are mounted at the rear of the machine to regulate the paving material out of the rear of the tunnel. A lay down screed is located behind the feed augers. In order to improve turning characteristics in a system featuring a positive traction device, the drive system is connected to rotary transducers which measure the direction and degree of wheel turn. Using the input from the rotary transducers, the drive system allows a speed differential between the inside and outside wheels in a turn. In an alternate lay down machine embodiment, a windrow pickup assembly is substituted for the hopper and a pair of tunnel side forms are used in place of the conveyor. The frame having a tunnel and the drive system using rotary transducers may be utilized in a paving material transfer machine or a road widening machine.