Abstract:
A belt conveyor for a road-finishing machine or a charger. The belt conveyor includes a conveyor belt in which a displaceably mounted support element abuts the conveyor belt, and a first and a second piston cylinder unit operate to displace the support element. The first and the second hydraulic piston cylinder units can be pressurised independently of each other in order to move the support element into a desired inclined position. If the conveyor belt of the belt conveyor runs laterally away from the support element, the out-of-true running of the conveyor belt can be counteracted by an inclined position of the support element which moves the conveyor belt back into its original position.
Abstract:
A pushing device that can be attached to a road paver or feeder vehicle. The pushing device is attachable to a chassis component of the road paver or the feeder vehicle and comprises a pushing unit that is attached in a movable manner to the chassis component by means of at least a spring-absorber unit. The pushing unit can be displaced relative to the chassis component in a first direction and a second direction, whereby the spring-absorber unit has a greater spring rate during a movement of the pushing unit in the first direction than in the second direction.
Abstract:
A method and a system for applying a road surface using a mixing plant for producing laying material, a road finishing machine processing the laying material to a road surface, and a supply chain transporting the laying material from the mixing plant to the road finishing machine. Request commands are transmitted from the road finishing machine to the mixing plant and/or to the supply chain, and, depending on these request commands, the production rate of the laying material in the mixing plant, the temperature of the laying material produced in the mixing plant, and/or the mass flow of laying material supplied to the road finishing machine per time unit by means of the supply chain are adjusted.
Abstract:
Method for laying down a pavement with a road paver, in which machine parameters are coordinated at least with paving requirements of the pavement by means of a controller and in which at least one machine parameter set is created and stored in advance for a paving requirement determined before the paving, the parameter set allowing a high level of machine efficiency and pavement quality to be expected and/or has already produced the same for an at least similar earlier paving requirement of an already laid down pavement, and the pavement on the basis of the parameter set created in advance. The road paver has a controller with an on-board computer connected to a sensor system and an actuating system, and includes memories and a retrieval and/or comparison section for triggering the actuating system for implementing the machine parameters of the parameter set created in advance.
Abstract:
In a screed with a basic screed and at least one extendable screed movable relative to the basic screed with a hydraulic cylinder and an electro-hydraulic control comprising a magnet-actuated directional control valve for at least controlling the direction of the hydraulic cylinder, the directional control valve for changing the rate of motion of the hydraulic cylinder is guided by an operator or automatically and is a proportional directional control valve (W) with proportional-electric direct actuation or proportional-electric-hydraulic pilot control. The proportional directional control valve for the hydraulic cylinder is connected on the actuation side with an electro-hydraulic control of a hydraulic system of the road finishing machine.
Abstract:
In a system for laying down an asphalt layer made of asphalt material, and having a road paver having a screed with compacting tools, a compacting device and a mixer, an electronic material density module is provided in or for the road paver. The electronic material density module obtains data during the laying process regarding at least the actual degree of compaction of the asphalt layer produced in the area of at least one compacting tool and evaluates and/or documents these data at least for operational optimisation and/or operational monitoring of the road paver and/or compacting device and/or mixer. The data obtained is communicated to the compacting device that produces the final degree of compaction of the asphalt layer based on the data and on the actual degree of compaction determined at the screed.
Abstract:
The invention relates to a construction machine, in particular a road finishing machine, which can be set to at least two different operating modes by the operator. With a control system, a determined position for a drive can be stored in a first operating mode to which the drive automatically moves during a change from a second operating mode back to the first operating mode. In case of a change of the operating mode from the second operating mode to the first operating mode, several drives can optionally also be simultaneously moved to the previously stored position.
Abstract:
In a screed with a basic screed and at least one extendable screed movable relative to the basic screed with a hydraulic cylinder and an electro-hydraulic control comprising a magnet-actuated directional control valve for at least controlling the direction of the hydraulic cylinder, the directional control valve for changing the rate of motion of the hydraulic cylinder is guided by an operator or automatically and is a proportional directional control valve (W) with proportional-electric direct actuation or proportional-electric-hydraulic pilot control. The proportional directional control valve for the hydraulic cylinder is connected on the actuation side with an electro-hydraulic control of a hydraulic system of the road finishing machine.
Abstract:
A paving convoy for producing a bituminous cover layer including a self-propelled road paver and a paving material feeding assembly which is self-propelled and travels in front of the road paver. A paving material conveying device extends from the feeding assembly to the road paver. A spraying module including its own undercarriage and components for storing and deploying bitumen emulsion is provided between the feeding assembly and the road paver. The spraying module has a spraying bar facing the front end of the road paver. The spraying module is either coupled to the feeder assembly by a detachable towing connection or to the road paver by detachable pulling connection.
Abstract:
In a system for laying down an asphalt layer made of asphalt material, and having a road paver having a screed with compacting tools, a compacting device and a mixer, an electronic material density module is provided in or for the road paver. The electronic material density module obtains data during the laying process regarding at least the actual degree of compaction of the asphalt layer produced in the area of at least one compacting tool and evaluates and/or documents these data at least for operational optimisation and/or operational monitoring of the road paver and/or compacting device and/or mixer. The data obtained is communicated to the compacting device that produces the final degree of compaction of the asphalt layer based on the data and on the actual degree of compaction determined at the screed.