摘要:
Disclosed herein are various systems and methods for producing mechanical power from a heat source. The system may include a heat recovery heat exchanger, a turbine, a condenser heat exchanger, and a liquid circulating pump, etc. In other embodiments, a desuperheater or an economizer, or both, may be employed. In one illustrative embodiment, the system comprises a first heat exchanger adapted to receive a fluid from a heat source and a working fluid, wherein, when the working fluid is passed through the first heat exchanger, the working fluid is converted to a vapor via heat transfer with the fluid from the heat source, at least one turbine adapted to receive the vapor, and an optional economizer heat exchanger adapted to receive exhaust vapor from the turbine and the working fluid, wherein a temperature of the working fluid is adapted to be increased via heat transfer with the exhaust vapor from the turbine prior to the introduction of the working fluid into the first heat exchanger. The system further comprises a condenser heat exchanger that is adapted to receive the exhaust vapor from the turbine after the exhaust vapor has passed through the optional economizer heat exchanger and a cooling fluid, wherein a temperature of the exhaust vapor is reduced via heat transfer with the cooling fluid, and a pump that is adapted to circulate the working fluid to the optional economizer heat exchanger.
摘要:
A method and apparatus for improving a steam-to-steam reheat system employing the drain cooler concept in a steam turbine is disclosed. The large and complicated drain receiver of the prior art is eliminated, thereby removing a source of unreliable performance and internal flooding of MSR bundle drains. A drain cooler is utilized and its utility enhanced by installing a condensate bypass line with control valve which is used to adjust the condensing capability of the drain cooler in order to optimize the amount of scavenging steam for varying load conditions, thereby achieving an improvement in heat rate reduction.
摘要:
A system includes an HRSG that includes a plurality of heat exchanger section fluidly coupled to each other. The plurality of heat exchanger sections comprises at least one economizer, at least one evaporator, at least one reheater, and at least one superheater. In addition, the HRSG includes an additional heat exchanger section coupled to two different heat exchanger sections of the plurality of heat exchanger sections. Further, the HRSG includes a controller programmed to selectively fluidly couple the additional heat exchanger section to one of the two different heat exchanger sections to alter a heat duty for the selected heat exchanger section fluidly coupled to the additional heat exchanger.
摘要:
A steam power plant is suggested having, parallel to the preheater passage (VW1 to VW4), a heat reservoir (25) which is loaded with preheated condensate in weak-load times. This preheated condensate is taken from the heat reservoir (25) for generating peak-load and inserted downstream of the preheater passage into the condensate line (19.2) resp. the feed water container (8). Thus it is possible to quickly control the power generation of the power plant in a wide range without significantly having to change the heating output of the boiler of the steam generator (1). A steam power plant equipped according to the invention can thus be operated with bigger load modifications and also provide more control energy.
摘要:
A steam power plant is suggested having, parallel to the preheater passage (VW1 to VW4), a heat reservoir (25) which is loaded with preheated condensate in weak-load times. This preheated condensate is taken from the heat reservoir (25) for generating peak-load and inserted downstream of the preheater passage into the condensate line (19.2) resp. the feed water container (8). Thus it is possible to quickly control the power generation of the power plant in a wide range without significantly having to change the heating output of the boiler of the steam generator (1). A steam power plant equipped according to the invention can thus be operated with bigger load modifications and also provide more control energy.
摘要:
The power output from a nuclear power plant or fossil fuel power plant operating under constant reactor (or furnace) and boiler conditions is varied by regulating the rate of turbine extraction steam and primary high pressure steam used to heat boiler feed water (BFW). During periods of low power demand excess extraction steam is drawn off to heat excess quantities of boiler feed water. One portion of the BFW is fed to the boiler while the other portion is used to reheat a low vapor pressure (LVP) organic material which hot material is stored under an inert atmosphere at atmospheric pressure in a high temperature storage location means. During periods of high power demand BFW preheat duties would be taken over entirely by the moving LVP organic material, moving from hot to cold storage location means, use of extraction steam for BFW reheat being curtailed and such untapped extraction steam being allowed instead to expand itself fully in the turbines. The boiler at all times receives a constant amount of uniformly preheated BFW.