Abstract:
A work implement has an internal combustion engine that drives a tool of the work implement via a clutch. The clutch has at least one driving element which is operatively connected to the internal combustion engine and at least one output element which is operatively connected to the tool. The internal combustion engine has a starting device with a starting position and an operating position. To avoid unintentional rotation of the output element when starting the internal combustion engine, the work implement has a blocking device with a detent pawl. In an actuated position, the detent pawl projects into the movement path of the output element, limiting the rotation of the output element. In an unactuated position, the detent pawl releases the output element. The starting device has an actuating device which, in the starting position, keeps the detent pawl in the actuated position.
Abstract:
An internal combustion engine has a one-way clutch including a ring gear connected to the output shaft of a starting motor, an outer race member connected to a crankshaft, and a claw piece arranged between the outer circumferential surface of the ring gear and the inner circumferential surface of the outer race member facing the outer circumferential surface of the ring gear. The ring gear and the outer race member have a threaded hole and a through hole, respectively, to receive a jig for fixing the ring gear and the outer race member to each other.
Abstract:
An internal combustion engine is provided with a ratchet one-way clutch between an output shaft of a starting motor and a crankshaft. The one-way clutch includes a claw piece which rotates integrally with the crankshaft, and an engagement part which rotates integrally with the starting motor and with which the claw piece engages. An electronic control device performs control for driving the starting motor when the engine is stopped to reduce the difference between the rotation speed of the engine and the rotation speed of the starting motor, that is, the difference between the rotation speed of the claw piece and the rotation speed of the engagement part.
Abstract:
According to one embodiment, a starter for a small engine includes: a torque apply unit that applies a torque to a torque-accumulation spring; a rotating member that transmits the accumulated torque to a crankshaft; and a rotation regulation unit that restrains the accumulated torque from being transmitted to the crankshaft, wherein the rotation regulation unit includes: a regulation ratchet provided on a rotating body linked with the crank shaft to rotate therewith; and a pressing unit provided on an engine case to be engaged with the regulation ratchet and to regulate an operation thereof, and wherein the regulation ratchet is disengaged from the pressing unit by the torque accumulated in the torque-accumulation spring when the accumulated torque exceeds a predetermined resilient force, thereby starting the engine.
Abstract:
A power transmission mechanism between an engine starter and an engine capable of securely engaging the ratchet wheel of a rotatingly driven part with the lever-like engagement/disengagement member of a centrifugal clutch mechanism when the engine is started. The side face of the lever-like engagement/disengagement member facing the ratchet teeth of a second ratchet part is formed in such a shape that is recessed in a direction apart from the peripheral surface of the second ratchet part in an area starting at its pivoting part toward an engagement/disengagement claw part. The engagement/disengagement claw part formed at the tip of the lever-like engagement/disengagement member is engaged with the ratchet teeth of the second ratchet part by surface contact, and the ratchet teeth of a first ratchet part and the ratchet teeth of the second ratchet part are disposed at a prescribed phase difference.
Abstract:
According to an aspect of the present invention, there is provided a recoil starter including: a case; a reel pivot formed on the case; a rope reel rotatably supported on the reel pivot; a recoil spring; a cam; a power storage spring interposed between the rope reel and the cam; and a power storage ratchet mechanism disposed between facing surfaces of the rope reel and the cam and. The power storage ratchet mechanism is configured to disengage the rope reel and the cam when the rope reel rotates in an engine-starting direction, and engage the rope reel and the cam when the rope reel rotates in an opposite direction to the engine-starting direction.
Abstract:
A starter for a small-sized engine, capable of reliably starting the engine by a rope reel and stably supporting a drive cam. The starter has, received in a starter case, a cylindrical drive cam having a starter clutch mechanism, the rope reel for a recoil starter, and a starter motor, where the drive cam can be selectively operably connected to the rope reel or a starter motor. The rope reel is directly operably connected to the drive cam through a one-way clutch mechanism. Support plates are formed projected from the inner surface of the starter case toward the outer peripheral surface of the drive cam. Opposite ends of the drive cam are rotatably supportedly fitted into bearing holes formed in the support plates.
Abstract:
A recoil starter includes: a rope reel on which a recoil rope, one end of which is held on an outside of a starter case, is wound and which is fitted turnably on a reel pivot formed on an inside of the starter case; a recoil spring that turns and energizes the rope reel in a direction along which the recoil rope is rewound; a cam member one end of which is fitted turnably onto the reel pivot to oppose to the rope reel and which transfers a turning to an engine side via a ratchet mechanism; and a coil spring-like damper spring both ends of which are engaged with the rope reel and the cam member respectively; a bearing portion that supports turnably the cam member; and a dust cover provided integrally with the starter case.
Abstract:
An engine starting device includes a roller selectively engageable between the crankshaft of an engine and an arbor. The roller causes the arbor to rotate in a loading direction in response to rotation of the crankshaft. Rotation of the arbor loads an elastic member. A locking mechanism, such as a ratchet wheel and pawl may be used to keep the elastic member loaded until it is desired to startup the engine. Engine startup is initiated by disengaging the pawl from the ratchet wheel and permitting the elastic member to unload. A pinion gear is mounted on a helically threaded portion of the arbor and moves axially along the helically threaded portion in response to unloading of the elastic member. The pinion gear engages teeth on the flywheel and causes the flywheel to rotate in a starting direction under the influence of the unloading elastic member.
Abstract:
An internal combustion engine includes an engine housing, a crankshaft supported within the engine housing for rotation with respect to the engine housing, and a flywheel fixedly mounted to the crankshaft and rotatable with the crankshaft in a starting direction to start the engine. A coil spring has an outer end fixedly interconnected with respect to the engine housing, and an inner end. A unidirectional clutch has a portion connected to the inner end of the spring. The unidirectional clutch is characterized by an interference condition in which the unidirectional clutch couples the inner end of the spring to the flywheel such that the flywheel and crankshaft may be rotated in the starting direction in response to unloading of the spring. The unidirectional clutch is also characterized by a non-interference condition in which the inner end of the spring is uncoupled from the flywheel. An input assembly is interconnected with the spring and selectively movable into contact with flywheel to load the spring in response to rotation of the flywheel. A locking mechanism selectively prevents the spring from unloading, and at least one manual actuator is actuable to disengage the locking mechanism from the spring to enable unloading of the spring.