Abstract:
A hydrokinetic turbine system with dynamic tuning capabilities is disclosed. Individual hydrokinetic turbine units are dynamically tuned to accommodate changes in height and flow velocity corresponding to water in a waterway. Dynamically tuning the turbine units to accommodate waterway changes optimizes power generation output. Dynamically tuning a turbine system includes raising or lowering turbine blade height, extending or retracting turbine blade length, and narrowing or widening a turbine mouth, channel, and exit through which water flows. The hydrokinetic turbines may be arranged in an array along a waterway, and each hydrokinetic turbine in the array is connected over a controls system configured to adjust turbine characteristics at each turbine unit in the array for optimizing power generation output for the waterway in which the turbine array is installed.
Abstract:
A power generating system including a movable tank filled configured to move vertically, a piston driven by the movable tank via a piston rod, a first cylinder filled with the liquid, and connected to the piston at a top end and a turbine at a bottom end, wherein the piston reciprocates in the first cylinder pushing the liquid from the first cylinder into the turbine causing the turbine to rotate and produce power, and a stationary tank connected to an outlet of the turbine. The system further includes a second cylinder connected to the movable tank and the first cylinder, and a balloon filled with gas connected to a top portion of the movable tank, wherein the balloon lifts the movable tank from a bottom position to a top position when the movable tank is empty.
Abstract:
Disclosed is a system for controlling a water turbine generator for waterworks, which monitors and controls a plurality of water turbine generators, provided in a water pipe, for waterworks in real time to integratedly operate the water turbine generators, contributes to stably generate and secure power, and increases an efficiency of the water turbine generators through integrated management. The system for controlling a water turbine generator for waterworks includes an integration control system configured to establish a power generation driving plan, based on a target amount of energy collected by a plurality of water turbine generators and a driving range of each of the plurality of water turbine generators, and a power generation unit configured to generate power through generation of power by a water turbine according to control based on the power generation driving plan, measure an amount of generated power, an amount and a pressure of water flowing into the plurality of water turbine generators, and an amount and a pressure of water flowing out from the plurality of water turbine generators, and supply a result of the measurement to the integration control system.
Abstract:
An adaptive system for harvesting hydrokinetic energy from flowing fluid uses a hydrofoil-type vane in a flow-way and an electrical power generator to convert torque generated by the oscillating vane to electrical current. The generator may be electromagnetic or piezoelectric. The system includes a control module that measures the oscillation of the vane, the generated torque, or the characteristics of the generated current, and modifies the resistance of the vane or the conversion of the electrical current in response to changes therein. Some systems include a frame that can be anchored in a body of water. Some systems are portable and provide illumination. Some systems are adapted for use as hiking or camping gear and may be inserted into stream beds or used as walking sticks. Some systems are in-line devices. Some systems are adapted as fishing lures.
Abstract:
A hydroelectric turbine generator and control system is provided that optimizes the maximum possible power output at all times by strictly monitoring power output from the generator unit and modulating the wicket gate angle and the runner blade pitch independently of one another. The hydroelectric turbine generator includes a means for separately controlling wicket gate angle and runner blade pitch. The wicket gate angle control mechanism controls the flow into the system, pre conditions flow for maximum power and maintains reservoir level. The runner blade pitch control mechanism continuously monitors the system power output based on actual power produced, and adjusts system parameters in order to achieve maximum power output.
Abstract:
A wind or ocean turbine has an input-power shaft-mounted, rotating bull-gear with smaller stationary pinion-driven powertrains including generators mounted around the periphery of the bull-gear. A controller regulates torque experienced by each powertrain to balance torque between generators at any system load. Regulation includes controlling local voltage at each generator by a transformer configured as a reactor. Coils of the transformers are wired in parallel and actively modulated with an SOR, solid-state, switching device. Each generator output is connected to a respective primary coil of a transformer and a respective secondary coil is connected to an SCR. By using pulse width modulation, the SCR is gated on and off for a portion of a 60 Hz cycle. By adjusting the duty cycle of SCR gating, any voltage between 80% and 100% is attained to satisfy immediate torque requirements.
Abstract:
A hydroelectric power generation apparatus includes a braking force generation unit configured to apply a braking force to rotation of a hydraulic turbine, and a controller configured to control the braking force generation unit to repeat increasing and decreasing the braking force to vary a rotational speed of the hydraulic turbine. Varying the rotational speed of the hydraulic turbine helps to flow away debris and the like adhering to hydraulic turbine blades. Preferably, the braking force generation unit includes an electrical, mechanical or fluid type braking device configured to apply a braking force to a rotary shaft of the hydraulic turbine. Preferably, the braking force generation unit includes a power generator configured to generate power through rotation of the hydraulic turbine, and the controller increases/decreases the braking force by varying power extracted from the power generator.
Abstract:
The invention concerns a system for controlling the flow of turbined water from a plurality of hydroelectric plants (1, 2, 3, 4, 5) arranged in series along a watercourse with open channel flow, defining upstream of each plant a plurality of head races subject respectively to hydraulic flow and level constraints, said plurality of hydroelectric plants, in which the flow of water turbined by each of said plants is controlled by means of a flow setpoint (QCui), said system comprising regulation of a global electrical production power setpoint (Pc) for said plurality of hydroelectric plants by means of a flow regulation setpoint (QRGP) taken into account by the flow setpoint (QCi) of each of said plants, and in that said flow regulation setpoint (QRGP) determined by said regulation is weighted for each of said plants by means of weighting coefficients (αi) as a function of the respective hydraulic characteristics of the head races defined upstream of said plants.