摘要:
A Kaplan-type turbine includes a stator part and a rotor part; the stator part having a conduit, configured to convey a water flow towards an impeller having a rotation axis, and a stator of an electric generator, while the rotor part includes: an impeller having in turn: an ogive with at least three blades with variable angular setup with respect to an inclination axis substantially orthogonal to the rotation axis; a rotation shaft bearing the impeller; adjustments for adjusting the setup of the blades, defined inside the ogive and the rotation shaft; a rotor of the electric generator, fixed to the rotation shaft. The adjustments for adjusting the setup of the blade include for each blade: a load-bearing disc, from which one blade develops, which load-bearing disc is constrained to rotate on the ogive around the inclination axis; a lever, fixed to the load-bearing disc and developing radially inside the ogive; a manoeuvring rod, pivoted to the lever and to a drive slider.
摘要:
A device is used in a hydraulic machine of the type which comprises a runner or rotor with a hub body and vanes or blades which are rotatably journalled in bearings in the hub body, and which has at least one chamber which communicates with the bearings. The device comprises an oil supply to the bearings and elements for leading oil away from the chamber at pace with the supply of oil, such that the chamber is caused to contain an essentially constant volume of oil, which is smaller than the total volume of the chamber, which oil volume is pressed towards the peripheral wall of the chamber by the centrifugal force at the rotation of the runner.
摘要:
The invention relates to a device of a safety system and/or resource and energy-efficiency improvement system for influencing the flow around an aero- or hydrodynamic body, preferably an aerofoil, according to the principle of a back-flow flap, characterized in that: said device, together with the aero- or hydrodynamic body, in particular aerofoil, form at least a partial shift of the delimitation of the flap region by means of the back-flow flap and the delimiting component thereof when the back-flow flap is partially and/or completely raised, thus influencing the trailing edge separation vortex/vortices and/or the flap separation vortex/vortices; and in that the delimitation of the flap region shifts completely up to or beyond the profile trailing edge, or shifts only to a section in front of the profile trailing edge. The delimitation component is movably connected to the aerofoil by means of a basic element and is preferably permanently secured and/or releasably secured for maintenance purposes, thus ensuring a long service life for the rotor blade and/or wind turbine and/or flap system, preferably >5 years, particularly preferably >10 years, and most particularly preferably >=20 years, and/or thus optionally allowing simple removal/replacement.
摘要:
A runner vane of an axial hydraulic machine according to embodiments described herein includes a center-side vane part provided on a radial center side and defined by a center-side camber line, and a boss-side vane part provided at a side edge on a side of a runner boss and defined by a boss-side camber line. As determined by the flow direction of a turbine, a curvature of an upstream side portion of the boss-side camber line is larger than a curvature of an upstream side portion of the center-side camber line. An upstream end of the boss-side vane part is positioned on a side of a rotation direction of a runner in comparison with an upstream end of the center-side vane part when viewed toward a downstream side along a rotation axis line of the runner.
摘要:
An improved rotor blade used in combination with a submersible electrical generator comprises a rotor base with width BW, a leading edge, a tip, and a trailing edge. The leading edge and the trailing edge are defined as elliptical curves having a radius of 8.0 BW. The rotor has a surface area profile substantially in accordance with the Cartesian coordinate values X and Y set forth in Table I. The rotor blade can be functionally connected to a rotor shaft through a pivotal support axial which allows the pitch of the blade to be set and maintained. The pitch is set to harness the kinetic energy of flowing water for generating electricity.
摘要:
A water turbine or pump having a rotor (1) and a stator (2). The leading edges (13) and the trailing edges (14) at least of the rotor blades (6) form a bend (15) projecting in opposite relationship to the flow direction (12). That causes a flow force resulting in a self-cleaning effect being applied to impurities which are deposited at the leading edges (13). However the adjustment design providing for adjustability of the rotor blades remains substantially unchanged.
摘要:
The invention concerns a rotor blade for a water turbine with a hydrodynamic profile, to which a suction side and a pressure side are associated, comprising a plurality of overflow channels, which are arranged in the hydrodynamic profile and create a hydraulic connection between the suction side and the pressure side and to which a valve arrangement is associated respectively.The invention is characterised in that the valve arrangement is closed below a preset load limit threshold for the rotor blade and is opened above the load limit threshold, whereas every overflow channel with the valve arrangement in the open position reduces the power coefficient and/or the thrust coefficient of the rotor blade with respect to the closed position.
摘要:
A water powered turbine (1) comprises a main support frame-work (2) which rotatably carries a rotor (3) comprising a main shaft (5) to which three blades (7) are attached by carrier discs (8) and (9). The carrier discs (8, 9) are rigidly secured to the main shaft (5), and the blades (7) are pivotally connected to the discs (8) and (9) by pivot shafts (16) and (17). Each blade (7) is of constant hydro-foil cross-section along its entire length and defines a first upper spiral (12) and a second lower spiral (13). The first spiral (12) extends from a first end (10) which is coupled to the main shaft (5) by the carrier disc (8), and the second spiral (13) of each blade (7) extends from a second end (11) of the blade (7) which is coupled to the main shaft (5) by the carrier disc (9). The first and second spirals (12) and (13) are of opposite hand and extend from the respective first and second ends (10, 11) to meet midway between the respective first and second ends (10, 11). The first and second spirals (12, 13) define respective central spiral axes which substantially coincide with a main central rotational axis (4) about which the rotor (3) is rotatable. The pivot shafts (16, 17) of each blade (7) define a corresponding secondary axis (18) about which the blades (7) are pivotal for selectively altering the dive angle of the first and second spirals (12) and (13) of the blades (7).
摘要:
A water powered turbine (1) comprises a main support frame-work (2) which rotatably carries a rotor (3) comprising a main shaft (5) to which three blades (7) are attached by carrier discs (8) and (9). The carrier discs (8, 9) are rigidly secured to the main shaft (5), and the blades (7) are pivotally connected to the discs (8) and (9) by pivot shafts (16) and (17). Each blade (7) is of constant hydro-foil cross-section along its entire length and defines a first upper spiral (12) and a second lower spiral (13). The first spiral (12) extends from a first end (10) which is coupled to the main shaft (5) by the carrier disc (8), and the second spiral (13) of each blade (7) extends from a second end (11) of the blade (7) which is coupled to the main shaft (5) by the carrier disc (9). The first and second spirals (12) and (13) are of opposite hand and extend from the respective first and second ends (10, 11) to meet midway between the respective first and second ends (10, 11). The first and second spirals (12, 13) define respective central spiral axes which substantially coincide with a main central rotational axis (4) about which the rotor (3) is rotatable. The pivot shafts (16, 17) of each blade (7) define a corresponding secondary axis (18) about which the blades (7) are pivotal for selectively altering the dive angle of the first and second spirals (12) and (13) of the blades (7).