Abstract:
A device for fluid power recuperation includes at least one hydropneumatic accumulator having a shell. The shell contains a fluid port communicating with a fluid reservoir of the accumulator that is separated from a gas reservoir of the accumulator by a movable separator. The gas reservoir of the accumulator communicates via a gas port with at least one gas receiver containing a regenerating heat exchanger made in the form of a metal porous structure. The aggregate area of the heat exchange surfaces of the regenerating heat exchanger over the aggregate internal receiver volume exceeds 2000 cm2/liter, preferably exceeds 10000 cm2/liter.
Abstract:
A hydraulic hammer is disclosed that includes at least one accumulator that is connectable to a hydraulic circuit disposed in the housing of the hammer. The accumulator includes an annular base coupled to a cover with a diaphragm sandwiched therebetween. The annular base includes a proximal end and a distal end. The proximal end of the annular base defines a first central opening. The proximal end of the base in the housing define an annular inlet that encircles the first central opening and that is in communication with the first central opening. The cover also includes a proximal end and a distal end. The proximal end of the cover is coupled to the distal end of the base with the outer periphery of the diaphragm sandwiched therebetween.
Abstract:
A hydraulic system comprises a hydraulic fluid circuit including a hydraulic pressure reducer. The hydraulic fluid circuit comprises a supply line and a return line. A quick connect coupler is fluidly coupled to each of the supply line and the return line. A hydraulic control valve set is coupled to the supply line and the return line downstream of the quick connect couplers. A hydraulic piston cylinder assembly is coupled to the supply line and the return line downstream of said hydraulic control valve set. The hydraulic pressure reducer is fluidly coupled to at least one of the supply line and the return line between the quick connect coupler and the hydraulic control valve set.
Abstract:
A fill cap assembly for a transmission is provided. In one form, the fill cap assembly includes a first part and a second part, each defining a cavity therein. A flexible membrane is disposed between the first and second parts and separates the cavities of the first and second parts. The cavities are sealed from each other by the membrane. The cavity of the first part is configured to be in fluid communication with the inside of the transmission. When pressure rises in the transmission, the flexible membrane expands into the cavity of the second part. When pressure sinks in the transmission, the membrane collapses partially into the cavity of the first part, thus expanding out of and/or away from the cavity of the second part.
Abstract:
An accumulator membrane unit (2) for inclusion into an accumulator chamber (6) in an accumulator (1) for storing hydraulic energy under pressure. The accumulator membrane unit includes membrane elements (3) that are sealingly joined at their peripheries and limit an inside membrane volume (V) which varies in dependence of a pressure at an outside of the accumulator membrane unit. The invention also concerns an accumulator, a method and a rock drilling machine.
Abstract:
A pulsation attenuator for a fluidic system with a fluidic pump. The pulsation attenuator includes a fluidic channel, a first fluidic device adapted to attenuate pulsations with a shallow rolloff slope, and a second fluidic device adapted to attenuate pulsations with a shallow rolloff slope. The first fluidic device and the second fluidic device are connected to the fluidic channel such that they cooperatively attenuate pulsations with a steep rolloff slope. Preferably, the first fluidic device includes a first fluidic resistor and a first fluidic capacitor, and the second fluidic device includes a second fluidic resistor and a second fluidic capacitor. Preferably, the pulsation attenuator is arranged, similar a second-order low-pass filter, in the following order: (1) first fluidic resistor, (2) first fluidic capacitor, (3) second fluidic resistor, and (4) second fluidic capacitor.
Abstract:
The invention relates to a fluid power accumulator in which the fluid undergoes a state change as the system is pressurized to store energy. A state change can be a phase change, a chemical reaction, or a combination of these. Generally the state change results from the interaction of a compressible fluid contained in the accumulator with another substance, which can be a fluid or a solid. Preferably, the state change includes the physical adsorption of a fluid by a solid adsorbant. The invention can improve the energy storage density of a fluid power accumulator, allow a given energy storage density to be achieved at a lower maximum pressure, facilitate heat transfer and storage within an accumulator, and/or improve accumulator efficiency by storing energy in a form other than thermal energy, such as in the form of chemical energy.
Abstract:
A hydraulic fluid reservoir (10, 10′, 10″, 10′″) comprises a body 12, 12′, 12″ 12′″) defining a variable volume chamber having one end portion movable with the level of fluid in the chamber. A biasing member (18, 18′, 18″, 18′″) acting on a traction rod (16, 16′, 16″, 16′″) extending from the movable end portion restrains movement thereof under fluid pressure. The fluid pressure in the variable volume chamber advantageously counterbalances the force of reaction in the biasing member (18, 18′, 18″, 18′″).
Abstract:
Accumulator device for a hydraulic installation which includes an interior membrane, the membrane forming a fluid-accumulation cavity. It is characterised in that the membrane includes a fold which forms two sections, a first section from the wall of the cylindrical body to the fold and a second section from the fold to the moving support element, with the fold zone moving as the moving support element moves. It allows sufficient volumes of water accumulation to space apart the starting and stopping of the electrically-driven pump, but with small diameters of the membrane's moving support element.