摘要:
Embodiments of the present disclosure include a system, method, and apparatus comprising a direct steam generator configured to generate saturated steam and combustion exhaust constituents.
摘要:
A system for recovering waste heat from a stream of heated gas is disclosed. The system includes a convection heat transfer chamber, a boiler tank, and a plurality of heat pipes thermally interconnecting the convection heat transfer chamber with the boiler tank. Each of the heat pipes includes an evaporator section which is disposed in heat transfer relation with a stream of heated gas flowing through the convection heat transfer chamber, and a condenser section disposed in heat transfer relation with a volume of water disposed within the boiler tank. The evaporator sections and condenser sections are totally enclosed within the convection heat transfer chamber and boiler tank, respectively, and are connected in closed cycle fluid communication with each other. The heat pipes contain a working fluid which is characterized by a thermodynamic cycle in which the working fluid is vaporized in the evaporator section and flows to the condenser section where it is condensed to the liquid phase and returns in a closed cycle to the evaporator section, thereby transferring heat energy from the heated gas stream in the convection heat transfer chamber to the volume of water contained in the boiler tank. In a regenerative arrangement, exhaust gas discharged from the convection heat transfer chamber is recycled to the input of the convection heat transfer chamber to provide high mass flow at low velocity for optimum efficiency. In another arrangement, superheated steam is provided by a pair of heat pipe boilers whose convection heat transfer chambers are connected in series, with the evaporator of the steam generating unit being located downstream of the superheated unit and the input of the superheat unit being the steam output of the steam generating unit.
摘要:
In one aspect, the invention can be a heat exchanger comprising: a shell having an inner surface forming a cavity, the shell comprising an inlet for introducing the shell-side liquid into the cavity and an outlet for allowing the vapor to exit the cavity; a tube bundle comprising a plurality of tubes for carrying a tube-side fluid located in the cavity and having a longitudinal axis; a shroud circumferentially surrounding the tube bundle and positioned between the tube bundle and the inner surface of the shell so that an annular space exists between the shroud and the inner surface; an opening in a bottom portion of the shroud that forms a passageway between the annular space and the tube bundle; and an opening in a top portion of the shroud that forms a passageway between the annular space and the tube bundle.
摘要:
A heat exchanger for generating steam from water is disclosed. The exchanger comprises a first heat exchanging chamber, a second heat exchanging chamber and an array of heat pipes which are arranged to extend from within the first heat exchanging chamber to within the second heat exchanging chamber. The first heat exchanging chamber comprises a distributed inlet for passing the water into the first chamber from a distributed position around the chamber and an outlet through which the steam can exit the first chamber, the water being arranged to pass over the portion of the heat pipes which extend within the first chamber. The second heat exchanging chamber comprises an inlet for receiving a gas into the chamber and an outlet through which the gas can exit the second chamber, the gas being arranged to pass over the portion of the heat pipes which extend within the second chamber.
摘要:
An apparatus for generating steam within a heat exchanger. In one aspect, the invention can be a heat exchanger comprising: a shell having an inner surface forming a cavity, the shell comprising an inlet for introducing the shell-side liquid into the cavity and an outlet for allowing the vapor to exit the cavity; a tube bundle comprising a plurality of tubes for carrying a tube-side fluid located in the cavity and having a longitudinal axis; a shroud circumferentially surrounding the tube bundle and positioned between the tube bundle and the inner surface of the shell so that an annular space exists between the shroud and the inner surface; an opening in a bottom portion of the shroud that forms a passageway between the annular space and the tube bundle; and an opening in a top portion of the shroud that forms a passageway between the annular space and the tube bundle.
摘要:
A first portion of each of a plurality of Qu-type heat pipes is disposed in a hot gas path, and a second portion of each of the plurality of Qu-type heat pipes disposed away from the hot gas path. Also, the first portion of each of the plurality of Qu-type heat pipes extracts heat from the hot gas path and wherein the second portion of each of the plurality of Qu-type heat pipes creates a vapor that exits each second portion of the plurality of Qu-type heat pipes and away from the hot gas path.
摘要:
Heat is reclaimed from a high temperature gasifier exhaust gas of between 250° C. and 20000C. A first duct receives the exhaust gas, and outputs it at a reduced temperature. A second duct receives a heat transfer fluid and outputs it at an elevated temperature. A heat transfer arrangement conducts heat extracted from the product gas to the heat transfer fluid (steam), thereby elevating the temperature of the heat transfer fluid. A heat pipe formed of sodium, potassium, rubidium, or lithium, has a first end for communicating with the high temperature exhaust gas and a second end for communicating with the heat transfer fluid. The heat pipe has an envelope formed of a selectable combination of stainless steel, Inconel, nickel, molybdenum, tungsten, niobium, carbon, carbon composite, and Hastelloy X, and a safety valve that ensures safe operation. An adiabatic zone is interposed between the first and second ducts.
摘要:
A model steam generator including an improved feedwater system for monitoring the conditions of the heat exchange tubes within a nuclear steam generator is disclosed herein. The feedwater system generally comprises a first conduit fluidly connected between the boiler vessel of the model steam generator and the feedwater of the nuclear steam generator via a first valve, and a second conduit which is fluidly connected between this boiler vessel and a feedwater reservoir by way of a second valve. The feedwater reservoir is in turn connected to a source of demineralized, deaerated water by means of a third conduit having a third valve. This reservoir is further fluidly connected to the feedwater of the nuclear steam generator by means of a fourth conduit having a fourth valve. The improved feedwater system of the invention gives the operator three running options. First, he may run the model steam generator directly off the feedwater used in the nuclear steam generator. Second, he may fill the reservoir with feedwater used in the nuclear steam generator and mix anti-corrosive or cleaning additives into this feedwater before introducing it into the model steam generator in order to test their efficacy. Finally, if anti-corrosive or cleaning additives are already in use in the nuclear steam generator, he may fill the reservoir with demineralized, deaerated water and test alternative additives. The improved feedwater system also includes a means for maintaining a turbulent flow through the feedwater inlet conduit so that particulate contaminants in the feedwater will not have an opportunity to settle out before the feedwater is introduced into the model steam generator.
摘要:
A system for recovering waste heat from a stream of heated gas is disclosed. The system includes a convection heat transfer chamber, a boiler tank, and a plurality of heat pipes thermally interconnecting the convection heat transfer chamber with the boiler tank. Each of the heat pipes includes an evaporator section which is disposed in heat transfer relation with a stream of heated gas flowing through the convection heat transfer chamber, and a condenser section disposed in heat transfer relation with a volume of water contained within the boiler tank. The boiler tank is provided with a header plate having an array of heat pipe openings through which the heat pipes project. A heat support sleeve is received in each heat pipe opening in sealed engagement with the header plate, with the heat pipes projecting through the support sleeves and thermally interconnecting the convection heat transfer chamber with the boiler tank. An intermediate portion of each heat pipe is received in sealed engagement with its associated support sleeve. In a preferred embodiment, heat transfer through the support sleeve is minimized in an arrangement in which each heat pipe opening is reduced by a stepped bore with the support sleeve connected in threaded, sealed engagement with the stepped bore. Furthermore, in this arrangement, the support sleeve has swaged end portions which project beyond the header plate and engage the heat pipe on opposite sides at points which are remote with respect to the support sleeve/header plate interface. One of the swaged end portions is sealed against the heat pipe in a fluid-tight union within the boiler tank. The support sleeve is radially spaced with respect to the heat pipe, and is also radially spaced with respect to the heat pipe opening whereby heat transfer through the walls of the heat pipe to the support sleeve and to the header plate is minimized by concentric annular air gaps.