Abstract:
Disclosed may be an intermediate surface for supporting a small paver, wherein the surface can also be used to exchange heat with the pavers. In one embodiment, the apparatus may be a hextray defined by a frame with a hexagonal lattice for supporting pavers. The hextray preferably features a tubing track throughout the lattice to accommodate heat exchange tubing. In operation the hextray may be positioned above a pedestal or directly on a subsurface. In embodiment, the hex tray may be outfitted with insulation and a metal plate so that heat may be exchanged with pedestals via fluid passing through tubing installed throughout the hexagonal lattice. In a preferred embodiment, the hextray features a slot in its corners for receiving a locking disk or locking slider.
Abstract:
A heat absorbing or dissipating device has a multi-pipe arrangement for flowing thermal conductive fluids having a temperature difference. The thermal conductive fluids are reversely transported by a first fluid piping and second fluid piping of the multi-pipe arrangement and configured in way such that the piping has a parallel arrangement on a same end side of a heat dissipation or absorption receiving article or space.
Abstract:
A composite heating panel comprises a front panel having opposite front and rear surfaces; a heat dissipation panel in contact with the rear surface of the front panel; an insulated panel; and an elongate length of tubing for receiving a flow of fluid therethrough, the fluid being at above ambient temperature. The length of tubing is disposed between the insulated panel and the heat dissipation panel, and the length of tubing follows a tortuous flow path including at least one loop.
Abstract:
A geopolymeric material is described having compressive strength at 28 days ranging from 15 to 100 N/mm2, obtainable by curing for 12 hours at a temperature ranging from 20° C. to 60° C., from a geopolymeric aqueous mixture comprising the following inorganic components in the following parts by dry mass:
metakaolin 1565 potassium silicate and/or sodium silicate 2040 aggregates recycled from CDW (Construction and Demolition Waste) 5300;
said geopolymeric aqueous mixture is obtainable by mixing 20175 parts by mass of water with said inorganic components, and has a viscosity at 23° C. between 100 and 10000 Pa·s, wherein:
i) the viscosity is measured via Brookfield methodology, ii) the aggregates recycled from CDW belong to one or more of the classes 17.01.01, 17.01.02, 17.01.03, 17.01.07 according to the European Waste Catalogue, iii) the aggregates recycled from CDW have a grain size less than or equal to 4 mm, preferably less than or equal to 2 mm.
Abstract:
The present invention discloses that the thermal conductive fluids in temperature difference are reversely transported by the first fluid piping and second fluid piping in parallel or quasi-parallel arrangement on the same end side to produce heat absorbing or dissipating function onto the passively heat dissipation or absorption receiving article or space thereby forming a more uniform temperature distribution status on the heat absorbing or dissipating body (100) or the passively heat dissipation or absorption receiving article or space (200).
Abstract:
A panel, for retaining a heating or cooling tube relative to a substrate, has a standoff extending from a primary flap, wherein the standoff includes a tube contacting surface. A lateral fold extends from the standoff and includes a jaw having a tube retaining surface, wherein the tube contacting surface and the tube retaining surface are located to define a tube retaining channel in a closed position of the jaw. The panel can be formed of a single piece of sheet metal, wherein the sheet metal and configuration of the panel bias the jaw to the closed position.
Abstract:
A modular thermal panel can include a heat exchanger having connected top and bottom plates with channels formed there between for receiving a heat exchange fluid. An architectural tile (e.g., a paver, stone, acoustic tile, or any other architectural element) can rest on the top of the modular thermal panel, while an insulator panel is positioned below the modular thermal panel. The heat exchanger can transfer heat between the architectural tile and the heat exchange fluid to either cool or heat the architectural panel. Additional implementations include heat transfer systems including such modular thermal panels, and methods of collecting and utilizing thermal energy using such modular thermal panels.
Abstract:
Disclosed may be an intermediate surface for supporting a small paver, wherein the surface can also be used to exchange heat with the pavers. In one embodiment, the apparatus may be a hextray defined by a frame with a hexagonal lattice for supporting pavers. The hextray preferably features a tubing track throughout the lattice to accommodate heat exchange tubing. In operation the hextray may be positioned above a pedestal or directly on a subsurface. In embodiment, the hex tray may be outfitted with insulation and a metal plate so that heat may be exchanged with pedestals via fluid passing through tubing installed throughout the hexagonal lattice. In a preferred embodiment, the hextray features a slot in its corners for receiving a locking disk or locking slider.
Abstract:
A panel, for retaining a heating or cooling tube relative to a substrate, has a standoff extending from a primary flap, wherein the standoff includes a tube contacting surface. A lateral fold extends from the standoff and includes a jaw having a tube retaining surface, wherein the tube contacting surface and the tube retaining surface are located to define a tube retaining channel in a closed position of the jaw. The panel can be formed of a single piece of sheet metal, wherein the sheet metal and configuration of the panel bias the jaw to the closed position.
Abstract:
A circulation pump assembly for a heating and/or cooling system includes an electric drive motor (108) and a connected pump housing (106) in which at least one impeller (118) is situated and which comprises a first inlet (112) and a first outlet (114). The pump housing (106) includes a second inlet (122) which is connected in an inside of the pump housing (106) at a mixing point (130) to the first inlet (112). A regulating valve (134), which is designed for regulating the mixing ratio of two flows mixing at the mixing point (130), as well as a control device, which controls the regulating valve (134) for regulating the mixing ration, are arranged in the pump housing (106). A hydraulic manifold is provided with such a circulation pump assembly.