Abstract:
A radiantly heated, travelling hearth furnace having a supplementary feed means positioned intermediate the initial loading point and the final take-off point to increase the capacity of the furnace for treating objects fed thereto. When the objects are pellets of iron oxide and carbonaceous reductant the provision of supplementary feed means about half-way along the travel path of the hearth promotes uniformity of product by inhibition of reoxidation of reduced iron by exposure to a fossil-fuel-fired furnace atmosphere.
Abstract:
The invention relates to an apparatus for controlling a conveyor belt used in the continuously operated thermal treatment of a material bed, i.e. in continuously operated sintering, where the conveyor belt can be made to operate between a transmission drum and a bending drum. According to the invention, in order to control the conveyor belt (4, 23), at least on the portion proceeding from the transmission drum (2) to the bending drum (3, 22), to the conveyor arrangement there is connected at least one alignment element (9, 25), which is further connected to at least one roller (11, 27) guiding the conveyor belt (4, 23) in order to move the roller (11, 27) at least in the direction of the plane defined by the conveyor belt (4, 23).
Abstract:
A method is shown for producing a lightweight aggregate by treating flyash and sewage sludge. The flyash and sewage sludge are mixed together and then agglomerated into pellets, with or without the use of a binder. The pellets may be coated and then are dried. The dried pellets are introduced into a rotary kiln in a direction that is co-current with the flow of fuel and air through the kiln. The pellets in the kiln will be indurated and will experience complete calcination as well as varying degrees of pyrolizing and sintering. The product of the kiln is a nodular material having a low density but with a hard and porous structure. The product of the kiln is feed to a cooler. The flyash sewage sludge mixture has a significant fuel value that is usable in the kiln. Furthermore, the fuel value available in the kiln off-gases may be used for drying the materials.
Abstract:
A CONTINUOUS PROCESS FOR SMELTING AND CONVERTING COPPER CONCENTRATES TO METALLIC COPPER IN WHICH THE CONCENTRATES ARE FED INTO THE FURNACE IN THE FORM OF PELLETS SO AS TO COVER THE SURFACES OF THE LIQUID BATH IN THE FURNACE WITH A THIN LAYER OF PELLETS AND IN WHICH THE PELLETS ARE FED IN SUCH A WAY AS TO PREVENT THE FORMATION OF AGGLOMERATES OF UNSMELTED PELLETIZED MATERIAL.
Abstract:
A conveyor for hot material comprising a conveying unit for conveying the hot material, a material delivery unit for delivering the hot material to the conveying unit, a housing for covering at least a portion of the length of the conveying unit, introduction devices disposed in the housing for furnishing water to the hot material on the conveying unit, wherein the introduction devices are disposed exclusively in a section of the housing that in the conveying direction is remote from the material delivery unit, and an exhaust unit connected to the material delivery unit for withdrawal of water vapor, generated by the furnishing of water, to produce a water vapor stream that is counter to the conveying direction of the hot material and is directed toward the material delivery unit.
Abstract:
A pellet escalator in a pellet loading apparatus for loading nuclear fuel pellets from a pellet press into a sintering boat includes a conveyor in the form of an elongated arm for moving pellets and being pivotable to vertically move its discharge end toward and away from a sintering boat. The arm has an elongated recessed channel through which travels the upper run of an endless flexible conveying belt for transporting pellets from a receiving end to the discharge end of the conveyor. A chute is mounted to the arm at its discharge end and extends therebelow such that the chute is carried by the arm at its discharge end for vertical movement therewith toward and away from the sintering boat. Resiliently-flexible, deflectable bristled brushes are attached to the chute in opposing vertical rows. The brushes in one row are oppositely inclined and vertically offset from brushes in the other row for defining a gravity feed flow path of non-linear configuration between adjacent inner brush ends for transferring pellets downwardly through the chute along the flow path at a drop rate controlled by brush deflections. A stop finger mounted to the arm at its discharge end is actuatable between blocking and unblocking positions in which it respectively stops and permits pellet discharge from the upper run of the belt in the arm channel.
Abstract:
Apparatus for loading friable nuclear fuel pellets into a sintering boat from a pellet press which ejects newly made pellets. An inclined pellet chute (preferably a tube) receives the ejected pellets and discharges them against a first resilient brush which reflects the pellets downwardly to a second resilient brush. The brush tips are spaced apart such that a pellet moving downward along the second brush contacts the flexible brush tip of the first brush before dropping off the second brush (preferably with near-zero velocity) into the sintering boat.
Abstract:
IN A CONTINUOUS PRCESS FOR SMELTING AND CONVERTING COPPER CONCENTRATES TO METALLIC COPPER, IMPROVEMENTS IN TERMS OF MINIMIZING THE DUST LOSS FROM THE CONCENTRATES CAN BE ACHIEVED BY FEEFING THE CONCENTRATES IN THE FORM OF PELLETS. THE FEEDING OF HTE PELLETS AND THE INJECTION OF OXIDIZING GAS USED IN SUCH PROCESS MAY BE SO CONTROLLED AS TO PROVIDE SMELTING RATES OF BETWEEN ABOUT ONE HUNDRED POUNDS AND ABOUT THREE HUNDRED POUNDS PER SQUARE FOOT OF BATH SURFACE PER HOUR. DUST LOSSES MAY BE MAINTAINED BETWEEN ABOUT 0.8% AND 2.14% BY WEIGHT OF THE CONCENTRATED FED INTO THE FURNACE. PELLETS HAVING AN AVERAGE SIZE OF BETWEEN ABOUT 3/8 INCH AND 1/2 INCH WITH A MOISTURE CONTENT OF ABOUT 9% MAY ADVANTAGEOUSLY BE USED.
Abstract:
The present invention refers to a method and an equipment for curing and drying self-reducing agglomerates containing cement as a binder in the presence of saturated vapor at a temperature from about 70 to about 110° C. and under atmospheric pressure. The treatment is performed in one single equipment. The self-reducing agglomerates are comprised of mixtures of fines of iron ore and/or industrial residue containing iron oxides and/or metallic iron, fines of carbonaceous materials such as mineral coal, charcoal, green petroleum coke and similar fines, fluxing material such as steel plant slag and blast furnace slag, limestone, lime and similar materials, cement as a binder and fluxing agent, and humidity between 7 and 12%, produced in pellet-making units and/or briquette-making units and thereafter treated using one single piece of equipment, involving the steps of predrying with heated gasses (2), curing with saturated vapor (3) and drying with heated gasses (4) performed continuously and sequentially, controlling the discharge velocity (5) in order to allow the time of permanence of the agglomerate within the equipment to be from about 4 to about 12 hours. The cured and dried agglomerate may be processed in an adequate reducing/melting equipment to provide metals and metallic alloys.
Abstract:
The present invention refers to a method and an equipment for curing and drying self-reducing agglomerates containing cement as a binder in the presence of saturated vapor at a temperature from about 70 to about 110null C. and under atmospheric pressure. The treatment is performed in one single equipment. The self-reducing agglomerates are comprised of mixtures of fines of iron ore and/or industrial residue containing iron oxides and/or metallic iron, fines of carbonaceous materials such as mineral coal, charcoal, green petroleum coke and similar fines, fluxing material such as steel plant slag and blast furnace slag, limestone, lime and similar materials, cement as a binder and fluxing agent, and humidity between 7 and 12%, produced in pellet-making units and/or briquette-making units and thereafter treated using one single piece of equipment, involving the steps of predrying with heated gasses (2), curing with saturated vapor (3) and drying with heated gasses (4) performed continuously and sequentially, controlling the discharge velocity (5) in order to allow the time of permanence of the agglomerate within the equipment to be from about 4 to about 12 hours. The cured and dried agglomerate may be processed in an adequate reducing/melting equipment to provide metals and metallic alloys.