Abstract:
A scanning device includes: a motion sensor to detect motion imparted to the scanning device; a distance detector to determine a distance between the scanning device and a surface; an infrared detector to capture a temperature of the surface; an image sensor to capture an image of an indicia encoding data on the surface; and a processor configured to store the captured image and temperature, configured to operate the motion sensor to detect motion being imparted to the scanning device when in a low power state, and configured to transition the scanning device out of the low power state in response to such imparted motion by: operating the distance detector to determine the distance to the surface; and determining whether to operate the infrared detector to capture the temperature of the surface and whether to operate the image sensor to capture the image of the indicia, based on the distance.
Abstract:
A system may include temperature sensors configured to measure temperatures of devices within an industrial automation system. The devices may be disposed within enclosures separate from one or more spaces of an ambient space of the industrial automation system. The system may include thermal image sensors configured to acquire thermal imagery data associated with the ambient space. The system may include a processor configured to receive a first set of temperature data acquired by the temperature sensors over a period of time. The processor may further generate a second set of temperature data representative of one or more predicted temperatures associated with one or more additional spaces of the ambient space. The temperature model may represent expected temperatures of the one or more spaces with respect to the temperatures within the enclosures. The processor may generate a heat map visualization including one or more thermal indicators representative of the predicted temperatures.
Abstract:
Methods and apparatus are provided to determine the emissivity, temperature and area of an object. The methods and apparatus are designed such that the emissivity and area of the object may be separately determined as functions dependent upon the temperature of the object derived from a three or more band infrared measurement sensor. As such, the methods and apparatus may only require a regression analysis of the temperature of the object without any regression analysis of the emissivity and area of the object.
Abstract:
A scanning infrared sensor (10) in which the scanner (21), detector (32) and temperature converter (35) are all contained in proximity with one another in a single housing assembly (18) enables correction of both emissivity based on emissivity settings (41) for each of a plurality of spot targets (16') along a scan line (16) and correction for DC offset errors based on reference temperature measurement (45) of hot and cold references (34, 36). Correction is performed before digital conversion by an A/D converter (56) by a nulling circuit (46), a programmable gain circuit (50) and a bias circuit (62) to produce corrected digital temperature signals on a plurality of output ports (26) respectively associated to a plurality of spot targets (16') along a scan line (16) on a target (12) which are individually connectable with a multiple temperature display (27), a temperature recorder (28) and a process control (30).
Abstract:
Improved infrared camera system better enables furnace burden surface temperature measurements and temperature profile measurements and displays of such measurements to be made at various stocklines. An infrared data processing system is incorporated with the camera system which provides automatic acquisition, validation and preprocessing of thermal images from an infrared camera, defines and extracts key features of the thermal images, provides automatic classification and storage of thermal images, periodically reports on displays and printer burden temperature information, and provides convenient data retrieval and data archiving capability. The invention may be incorporated in new or existing methods and apparatus.
Abstract:
An image display device generates a temperature information image indicating, by a numerical value, a temperature of each pixel contained in a predetermined area including a position on a thermal image specified by a user, and causes a display to display the temperature information image while a temperature of a pixel corresponding to the position specified is displayed at a center of the temperature information image. The image display device sets a temperature range that has a predetermined temperature width and a center which is a temperature of a pixel corresponding to a position the temperature information image specified by the user, updates the temperature-color conversion information based on the set temperature range, regenerates the thermal image and the temperature information image based on the temperature-color conversion information updated, and causes the display to display the regenerated thermal image and the regenerated temperature information image.
Abstract:
A temperature detector is provided that is particularly suited towards the differential measurement of foot temperatures in diabetics. A radiation sensor views a surface area of the body and provides a radiation sensor output. Electronics coupled to the radiation sensor and an ambient temperature sensor compute a normalized surface temperature of the area normalized to a specified ambient temperature as a function of a sensed ambient temperature and a sensed radiation.
Abstract:
A remote monitoring system can include a plurality of infrared cables, where each of the infrared cables can have a respective first opening at a first end of the cable and a respective second opening at a second end of the infrared cable that is opposite the first end. The infrared cables can be configured to conduct infrared light emitted from a respective one of a plurality of monitored locations into the respective first opening to exit at the respective second opening. An infrared camera including an infrared sensor array can be optically coupled to each of the second openings of the plurality of infrared cables.