摘要:
An industrial control system includes a machine, a machine controller, and a safety controller. The machine controller is operable to identify a need for a human interaction, place the machine into a ready state for the human interaction, and generate a ready message responsive to placing the machine into the ready state. The safety controller is operable to receive the ready message, place the machine into a safe state responsive to receiving the ready message, and provide a human interaction indication responsive to placing the machine into the safe state.
摘要:
A robot learning system for trajectory learning of a robot (RB) having a robot arm between a base and a tool center point (TCP). A user interface allows the user to control the robot arm in order to follow a desired trajectory during a real-time. A probe sensor (PS) is mounted on the TCP during the learning session. The probe sensor (PS) measures a distance parameter (Z) indicative of distance from the TCP and a surface forming the trajectory to be followed, and an orientation parameter (X, Y) indicative of orientation of the TCP and the surface forming the trajectory to be followed. These distance and orientation data are provided as a feedback to the controller of the robot (CTL) during the real-time learning session, thereby allowing the robot controller software to assist the user in following a desired trajectory in a continuous manner. Especially, the probe sensor (PS) may have a displaceable tip (TP) to follow a surface and having a neutral or center position, and where the robot controller software controls the robot movements to seek the neutral or center position irrespective of the user's control inputs. Data (DT) is logged during the learning session, so as to allow later control of the robot (RB) in response to the data (DT) logged during the learning session.
摘要:
An industrial control system includes a machine, a machine controller, and a safety controller. The machine controller is operable to identify a need for a human interaction, place the machine into a ready state for the human interaction, and generate a ready message responsive to placing the machine into the ready state. The safety controller is operable to receive the ready message, place the machine into a safe state responsive to receiving the ready message, and provide a human interaction indication responsive to placing the machine into the safe state.
摘要:
An accelerometer is mounted on a robot to monitor movement of a tool assembly attached to the robot end effector for safety monitoring purposes. The accelerometer provides an output signal to the robot controller which the controller uses to monitor the robot movement and stop that movement when a predetermined values of acceleration, speed and distance are detected during lead-through teaching of the robot. A handle can be attached to the robot end effector and the accelerometer can be mounted on the handle.
摘要:
A direct teaching apparatus which allows an operator to perform the direct teaching of a robot in safety. The apparatus includes a force detector and a teaching tool. The tool includes a working tool or handle fixed to the first detector and held by the operator to lead the robot. It also includes a device for computing the position or speed directive based on the force detector data and a motion model. It further includes a device for computing the generation torque of a motor for driving a robot depending on the position or speed directive and a controller to control the generated torque.
摘要:
A system for controlling an industrial robot, which is simplified in operation and capable of direct-teaching safely all the time. The system is provided with means (131 and 132) for monitoring a magnitude of an external force applied to the forward end of a hand during direct teaching, so that the motion of the robot can be forcibly restricted when the external force reaches a predetermined value of thereabove. Furthermore, when the system is operated to be set in a direct teach mode, a process (136) of correcting the offset of a force sensor is performed automatically. By monitoring a force detected by the force sensor, the discrimination is made as to whether an external force to operate the robot at an abnormal speed is applied to the robot or not, and when the external force becomes higher than a reference value, a mode of prohibiting the operation of the robot by the external force (position control mode) is set, or current supplied to a servo motor is cut off to prevent the robot from going into the erroneous operation due to an erroneous control.