摘要:
An actuator and a robot are capable of properly adjusting the compliance of the motions of links in response to external forces according to an environment or application. The actuator sets a drive command angular velocity on the basis of a desired motor angular velocity, which is the resultant angular velocity of a desired link angular velocity and a desired driven angular velocity. The component of the desired link angular velocity included in a resultant desired velocity imparts stiffness to the motion of a link, while the component of the desired driven angular velocity included in the resultant desired velocity imparts flexibility to the motion of the link. Thus, the balance between the stiffness and the flexibility of the motion of the link is adjusted by adjusting the resultant ratio between the desired link angular velocity and the desired driven angular velocity.
摘要:
Determining deviation of a multi jointed robot under load using a tribological contact between an end of the robot and any available hard constraint near the robot, involves pressing the end against the constraint, and then soliciting a movement of the end relative to the constraint in a tribologically resisted direction to apply a force that does not overbear the resistance. By measuring the force and a position encoded by the robot, a deviation of the robot under the corresponding load is determined. Correction terms may be required for deformation of the tribological surface and/or constraint. The constraint may be tooling or parts subjected to an intended process. The deviation at many measurement poses of the robot, each in multiple resisted directions, within the ordinary operating space of the robot, was used to derive compliances of the robot, and a kinetostatic model.
摘要:
A method 500 of operating an automated machine 100 is provided for inserting wires into grommet cavity locations 110 of an electrical connector 112 to compensate for manufacturing tolerances associated with the electrical connector. The method comprises inserting wires into grommet cavity locations of the electrical connector based upon a plug map 300 having offset values to compensate for manufacturing tolerances associated with the electrical connector. The method may further comprise selecting from a plurality of pre-generated plug maps having offset values the closest matching pre-generated plug map for the electrical connector based upon offset values associated with each of the plurality of pre-generated plugs maps. The selected pre-generated plug map having offset values corresponds to the plug map used to insert wires into grommet cavity locations of the electrical connector.
摘要:
An automated wire insertion machine for inserting wires into grommet cavity locations of an electrical connector includes a controllable wire insertion robot and a processor to generate pre-generated plug maps based upon an original plug map of the grommet cavity locations and to control the wire insertion robot based upon one pre-generated plug map to insert the wires into the grommet cavity locations. The pre-generated plug maps are generated by defining a range of potential error of the grommet cavity locations that includes at least one of a potential rotational error and a potential translational error, defining an acceptable tolerance of the grommet cavity locations that includes at least one of an acceptable rotational tolerance and an acceptable translational tolerance, and calculating offset values of the grommet cavity locations based on the range of potential error and the acceptable tolerance, thereby generating the plurality of pre-generated plug maps.
摘要:
A control apparatus makes a robot hand grip a work for measurement. The control apparatus controls the operation of a robot arm so that the robot arm keeps a force of striking the work for measurement against a reference constant, while making the end portion of the robot arm rotate around the end axis, in a state of making the outer periphery F3 of the work for measurement, which is gripped by the robot hand, strike against the reference jig. The control apparatus acquires a detection result detected by an encoder of each of the joints when the end portion of the robot arm has been rotated. The control apparatus calculates a correction amount of trajectory data based on eccentricity of a central axis with respect to an end axis, by using the detection result of the encoder, and corrects the trajectory data, based on the correction amount.
摘要:
A method and system for determining at least one property associated with a selected axis of a manipulator (2). The elasticity of the links (4, 6, 9, 10, 13, 14) and joints (3, 5, 7, 8, 11, 12) of a manipulator (2) can be modeled and the resulting compliance can be determined. A certain method is used to control the manipulator (2) such that certain quantities related to actuator torque and/or joint position can be determined for a certain kinematic configuration of the manipulator (2). Depending on the complexity of the manipulator (2) and the number of properties that are of interest, the manipulator (2) is controlled to a plurality of different kinematic configurations in which configurations the quantities are determined. Thereafter, a stiffness matrix (K) for each component of the manipulator (2) can be determined, and a global stiffness matrix (MSM) for the total manipulator (2) can be determined in order to determine at least one property of the selected axis.
摘要:
A method for assessing the positioning accuracy of a medical robot arm comprising at least one joint, wherein the rigidity of the robot arm in a joint placement is calculated and assessed on the basis of a rigidity model.
摘要:
An actuator and a robot are capable of properly adjusting the compliance of the motions of links in response to external forces according to an environment or application. The actuator sets a drive command angular velocity on the basis of a desired motor angular velocity, which is the resultant angular velocity of a desired link angular velocity and a desired driven angular velocity. The component of the desired link angular velocity included in a resultant desired velocity imparts stiffness to the motion of a link, while the component of the desired driven angular velocity included in the resultant desired velocity imparts flexibility to the motion of the link. Thus, the balance between the stiffness and the flexibility of the motion of the link is adjusted by adjusting the resultant ratio between the desired link angular velocity and the desired driven angular velocity.
摘要:
The aim of the invention is to compensate for the position-dependent length changes caused by the effect of weight in a variety of closed kinematic chains (K1 . . . Kn), for connecting a stationary first element (E1) to a movable second element (E2). Said aim is achieved, by using a back transformation (nullnull1), which determines a compensation value for each length change (dq1, dq2 . . . dqn), resulting from the application of the weight (Fg) impinging on the movable element (E2) in each kinematic chain.
摘要:
A method and system for determining at least one property associated with a selected axis of a manipulator (2). The elasticity of the links (4, 6, 9, 10, 13, 14) and joints (3, 5, 7, 8, 11, 12) of a manipulator (2) can be modeled and the resulting compliance can be determined. A certain method is used to control the manipulator (2) such that certain quantities related to actuator torque and/or joint position can be determined for a certain kinematic configuration of the manipulator (2). Depending on the complexity of the manipulator (2) and the number of properties that are of interest, the manipulator (2) is controlled to a plurality of different kinematic configurations in which configurations the quantities are determined. Thereafter, a stiffness matrix (K) for each component of the manipulator (2) can be determined, and a global stiffness matrix (MSM) for the total manipulator (2) can be determined in order to determine at least one property of the selected axis.