Abstract:
An image processing apparatus includes a storage and processing circuitry. The storage is configured to store a dither table in which a plurality of dither patterns are recorded, each of the dither patterns being formed with a halftone dot screen in which an output area ratio that is a proportion of void halftone dots per unit area corresponds to any one of gradation values of image data. The processing circuitry is configured to read a gradation value for each region in image data input for each toner color, decide a dither pattern to be applied to the read gradation value, read out the decided dither pattern from the dither table, and perform dither processing of applying the read dither pattern to the region in the image data.
Abstract:
An image processing apparatus includes an output image reading portion that reads an image of a physical document. The physical document includes a desired print image and a line image. The apparatus further includes a line image detecting portion that detects the line image at a predetermined position of the physical document using the image, a line image analyzing portion that determines a line width of the line image, a line-width correction value determining portion that compares the determined line width to a preliminarily set line-width threshold value and determines a line-width correction value based on the comparison, and a line-width correcting portion that performs line width correction on a to be formed line image based on the line-width correction value.
Abstract:
An image processing apparatus includes an output image reading portion that reads an image of a physical document. The physical document includes a desired print image and a line image. The apparatus further includes a line image detecting portion that detects the line image at a predetermined position of the physical document using the image, a line image analyzing portion that determines a line width of the line image, a line-width correction value determining portion that compares the determined line width to a preliminarily set line-width threshold value and determines a line-width correction value based on the comparison, and a line-width correcting portion that performs line width correction on a to be formed line image based on the line-width correction value.
Abstract:
A printer includes a printing device including a print head, a first moving device, and a second moving device, and a controller. The controller is configured to generate first partial-dot-data by executing a first generating process with respect to first partial-image data and generate second partial-dot-data by executing a second generating process with respect to second partial-image-data. In the second generating process, the controller determines a degree of reduction in density by the second generating process to a first degree of reduction in a first case where a particular condition including a code condition that is satisfied when the second partial-image includes at least a portion of a code image is satisfied, and determine the degree of reduction in density by the second generating process to a second degree different from the first degree of reduction when the second partial-image does not include the code image.
Abstract:
An image forming apparatus includes: a head unit that ejects ink; and a control unit that creates pixel data showing the amount of the ink ejected on predetermined pixels, and ejects metallic ink containing metallic particles from the head units such that the amount of the metallic ink is smaller than the amount of the metallic ink shown by the pixel data in a portion of the pixel inside the pixels on the outline of a metallic image formed by the ejected metallic ink and such that the amount of the eject ink per area is larger than the amount of the metallic ink at the inside pixels in the pixels on the outline, on the basis of the pixel data.
Abstract:
To perform variable magnification processing of an image while a change in an impression of an image and a processing load are suppressed. An image forming apparatus generates a normalized tile image in a tile image and calculates the number of the normalized tile images that can be arranged in a drawing region after variable magnification. If the number is not less than a first threshold value, data including a tile image in which the normalized tile images in the number are arranged in the drawing region after the variable magnification is generated as data after the variable magnification.
Abstract:
Bitmapped graphics, font and vector form figure are transformed to gradation value respectively by zooming means (1), font representing means (2) and vector representing means (3). They are inputted to figure conserving gradation pixel data generating means (11), where average gradation value of plural gradation values is made and each of bits is given to each of plural gradation values. These bits represent the figure of graphics. So, they are called figure bits or figure data. With appending these figure bits to the average gradation value, generated is a figure conserving gradation pixel data which represents a pixel with high resolution.
Abstract:
A Raster Image Processing (RIP) module includes an object detection module configured to receive at least one input file, detect objects in the at least one input file and create at least one image comprising a predefined number of stripes along the edges of the detected objects, an edge processing module configured to receive the at least one image and process the at least one image by changing the gray level of each one of the objects' stripes according to an edge processing table; and a dithering module configured to receive the at least one processed image, dither the at least one processed image according to the at least one image's gray levels and output a printing ready file.
Abstract:
An image processing apparatus increases, in the case of a low-density line, the density of a pixel included in the line to increase the density of the line, and increases, in the case of a high-density line, the density of a pixel adjacent to the pixel included in the line to increase the width of the line.
Abstract:
A method of generating an attribute map for processing an image. An image encoded into a plurality of segments is received. Each segment is characterized by a position within a base region associated with the image and is encoded according to a corresponding encoding format. A segment from the plurality of segments is decoded into a sub-image. The sub-image is associated with a combination operation and an attribute value derived based on at least one of a segment decoding format and a segment encoding format. The combination operation determines a process of combining the sub-image with the underlying base region. An information-carrying pixel value in the sub-image is determined based on the sub-image pixel content and the attribute value associated with the sub-image. The attribute map for processing the image is generated using the attribute value associated with the sub-image for at least one pixel of the attribute map.