Abstract:
The present disclosure is directed at systems, methods, and apparatus for implementing a rhythm-action game having an improvisational fill feature. The rhythm-action game can provide a musical track having at least one section that can be varied. The rhythm-action game can also provide a database having a plurality of fills, wherein each fill includes a soundtrack and a set of cues. During run-time, the rhythm-action game can select, for each section in the musical track that can be varied, a fill from the plurality of fills. In some embodiments, this selection can be based on various characterizing parameters to ensure that the fill is a good fit for the musical track. The rhythm-action game can also display a set of visual cues associated with the selected fill, and to evaluate whether received user input substantially corresponds to the displayed cues.
Abstract:
The object of the invention is to switch between plural sets of waveform data at desired timing while preventing noise. In response to an instruction for switching from a currently reproduced set of waveform data to another set of waveform data, either a switching position in the other set of waveform data or a switching in the currently reproduced set of waveform data is set as end timing for ending the reproduction of the currently reproduced set, with reference to switching position information of the two sets. If the switching position in the currently reproduced set is present within a 50 msec time range before a switching position in the other set that is present immediately after the switching instruction, the switching position in the currently reproduced set is set as the ending; if not, the switching position in the other set is set as the end timing.
Abstract:
An automatic rhythm performance device is of a type in which an intro performance which is in a rhythm pattern different from a rhythm pattern of main performance to be performed amidst music progression is automatically provided at the start of an automatic rhythm performance. To provide the intro performance, this device has a memory for storing special rhythm patterns in addition to regular rhythm patterns for main performance. At the start of the automatic rhythm performance, this memory is made operable for a predetermined time period so that the intro performance is executed on the basis of intro pattern pulses read out from the memory. The intro performance is inhibited when "synchro start mode" which starts the automatic rhythm performance in synchronism with key depression is being selected.
Abstract:
An automatic rhythm accompaniment system comprises memory units storing a plurality of rhythm patterns and a designating switch for selecting a desired rhythm pattern. A memory unit is further contained in the system for previously storing chord progress data and further storing control data to fill in an ad-lib rhythm. Therefore, the rhythm accompaniment system may perform the ad-lib rhythm in place of the rhythm pattern by the switch designation for each measure. Additionally, the accompaniment based on the chord progress data may also be performed automatically.
Abstract:
A rhythm system includes a memory for storing rhythm patterns, with a plurality of sections for controlling individual rhythm instruments, and instrument generators for producing sounds in accordance with the patterns. The patterns are stored in memory lines, with the number of counts in the patterns differing from one pattern to another. A plurality of short rhythm patterns can be stored on a single memory line. The system includes pushbutton switches for selecting the particular rhythm patterns and automatically selects the proper clock frequency for timing the selected rhythm pattern. The system is automatically reset at the end of the pattern and can selectively reset at the beginning of an intermediate position in the memory line, as required when a plurality of rhythms are stored in sequence on a single line. The system can also provide a special rhythm, such as a drum break, and this can be inserted during the playing of a selected continuous rhythm.
Abstract:
An apparatus for facilitating control of midi-sequence generation is disclosed. The apparatus may include a midi-sequence module configured to store a plurality of main midi sequences, store a plurality of fill midi sequences, and playback a plurality of main midi sequences and the plurality of fill midi sequences. The apparatus can also include a first foot-operable switch configured to operate the midi-sequence module, an instrument input, and a looping means configured to record a plurality of signals received from the instrument input, generate a plurality of recorded loops associated with the plurality of recorded signals, store the plurality of recorded loops, and playback each of the plurality of recorded loops. The apparatus can also include a second foot-operable switch configured to operate the looping means.
Abstract:
Methods, Apparatus, and a System (collectively a “platform”) for facilitating, enabling, or enhancing creation, control, and playback of digital audio loops or parts are disclosed herein. The platform may include playing back midi song segments. The midi song segments may comprise a midi sequence that is looped a predetermined number of times. The platform may include transitioning to another midi song segment automatically after predetermined number of loops or transitioning in response to a command. The platform may include changing the number of loops during playback of a song segment in response to a command. The platform may relate to enabling automatic generation of song segments during a performance. The platform may include automatically selecting midi sequences to enhance playback. The platform may include other features pertaining to enhancing or enabling digital music creation or composition.
Abstract:
An apparatus for facilitating control of midi-sequence generation is disclosed. The apparatus may include a midi-sequence module configured for generating midi-sequences. Further, the apparatus may also include a foot-operated switch configured to operate the midi-sequence module. Additionally, the apparatus may include a docking station configured to connect the apparatus to a mobile device. Accordingly, the midi-sequence module may be controlled through the mobile device. Further, in some embodiments the midi-sequence module may be included in the mobile device instead of the apparatus. Accordingly, the apparatus may include a switch port configured to electrically couple the foot-operated switch with the mobile device in order to control the midi-sequence module included in the mobile device.
Abstract:
In an automatic accompanying apparatus and an automatic accompanying method, the respective part structures of a plurality of basic variation patterns used as a basic accompanying pattern of rhythm are arbitrarily set by a music player. When the music player selects one basic variation pattern from a plurality of basic variation patterns to which the part structures are set in such a manner, the part structure is automatically set in such a manner that part structures of an intro-pattern, an ending pattern, and also a fill-in pattern, which are prepared for this rhythm, are made equal to the part structure of the selected basic variation pattern. The automatic accompaniment is carried out by employing the selected basic variation pattern, and the intro-pattern, ending pattern, and fill-in pattern, which own the same part structures as that of this basic variation pattern. As a result, the automatic accompaniment can be carried out while being matched with a motif of a user through the entire music. Moreover, the parameter setting operation executed before starting the musical play can be simplified.
Abstract:
A rhythm pattern variation device which has an address counter for generating a memory read-out address signal in accordance with a rhythm clock, a memory for outputting a prestored rhythm pattern in accordance with the address signal, means for selectively branching the outputted rhythm pattern to two lines, a variation circuit for producing a rhythm pattern of a desired time lag from the rhythm pattern on one of the two line, and means for combining the rhythm pattern on the other line and the delayed rhythm pattern from the variation circuit into a composition rhythm.