Abstract:
The magnetic recording medium is used in a magnetic recording and reproducing device in which a reproduction bit size S is 40,000 nm2 or less, and a numerical value of a residual magnetic flux density Brvertical, which is expressed in a unit G, in a vertical direction of the magnetic recording medium is X or more. The X is a value calculated as X = -0.01S + 1550.
Abstract:
An object of the present invention is to provide a lubricant which has excellent lubrication performance and is able to exhibit excellent lubrication performance even when under extreme pressure conditions. The present invention relates to a complex polyester composition containing polyester obtained by condensing polyhydric alcohol having at least two hydroxyl groups, a dicarboxylic acid having 44 carbon atoms, and monohydric alcohol. Further, the present invention relates to a lubricant composition containing the complex polyester composition, and a lubricant and a production method for a complex polyester composition.
Abstract:
An aspect of the present invention relates to hexagonal ferrite magnetic powder, which has an activation volume ranging from 900 nm3 to 1,600 nm3, and a ratio of a coefficient of plate thickness variation to a coefficient of particle diameter variation, coefficient of plate thickness variation/coefficient of particle diameter coefficient, ranging from 0.20 to 0.60.
Abstract:
An aspect of the present invention relates to a method of manufacturing a hexagonal ferrite magnetic particle comprising melting an Al-containing starting material mixture to prepare a melt and quenching the melt to obtain an amorphous material; subjecting the amorphous material to heat treatment to cause a hexagonal ferrite magnetic particle to precipitate in a product obtained by the heat treatment; collecting a hexagonal ferrite magnetic particle by subjecting the product to treatment with an acid and washing, wherein the hexagonal ferrite magnetic particle collected has a particle size ranging from 15 to 30 nm, comprises 0.6 to 8.0 weight percent of Al, based on Al2O3 conversion, relative to a total weight of the particle, and Al adheres to a surface of the hexagonal ferrite magnetic particle.
Abstract:
Provided is an Al-containing hexagonal ferrite magnetic powder which produces an excellent durability-improving effect on a magnetic recording medium, wherein uniform pulverization of the magnetic powder can be easily achieved by dispersion treatment in preparation of a magnetic coating material even in cases where the magnetic powder has a small primary particle size or has a composition which is likely to produce hard secondary particles. The magnetic powder for a magnetic recording medium is an Al-containing hexagonal ferrite magnetic powder having an Al/Fe molar ratio of 0.030 to 0.200, and has a particle size distribution in which the volume ratio of particles having a particle size of 30 μm or more as measured by a laser diffraction particle size distribution analyzer with a dispersion pressure of 100 kPa is 5.0% or less, and an activation volume Vact of 1800 nm3 or less.
Abstract:
A lubricating oil composition for internal combustion engines of passenger and commercial four-wheeled vehicles is provided which can exhibit excellent fuel efficiency performance and wear resistance reliability. The lubricating oil composition includes a base oil and a complex polyester mixture. The base oil includes at least one of poly-α-olefin, an ester-based base oil, or a partially hydrogenated mineral oil. The complex polyester mixture includes a polyester obtained by condensing a polyhydric alcohol, a polycarboxylic acid, and a monohydric alcohol having an oxyalkylene group. The content of the complex polyester mixture is 0.01% by mass or more with respect to the total mass of the lubricating oil composition, the high-temperature shear viscosity (HTHS viscosity) at 150° C. is 1.0 mPa·s to 2.6 mPa·s, and the NOACK evaporation amount is 40% or less.
Abstract:
Lithographic printing plates and processes for preparing the lithographic printing plates are provided. The plates have excellent printing durability, staining resistance and staining resistance over time. The lithographic printing plate precursor includes: a substrate; a photosensitive layer provided on the substrate; and an extra layer optionally provided between the substrate and the photosensitive layer. The photosensitive layer or the extra layer adjacent to the substrate contains (A) a copolymer. The copolymer (A) includes: (a1) a repeating unit of formula (a1-1) below in a side chain, and (a2) a repeating unit having at least one of the structures represented by formulae (a2-1) to (a2-6) shown in the specification in a side chain. L1, Z1, R1, and R21, R22 and R23 in formula (a1-1) and the variables in formulae (a2-1) to (a2-6) are as defined in the specification.
Abstract:
An aspect of the present invention relates to a method of manufacturing hexagonal ferrite magnetic powder. The method of manufacturing hexagonal ferrite magnetic powder comprises wet processing hexagonal ferrite magnetic particles obtained following acid treatment in a water-based solvent to prepare an aqueous magnetic liquid satisfying relation (1) relative to an isoelectric point of the hexagonal ferrite magnetic particles: pH0−pH*≧2.5, wherein, pH0 denotes the isoelectric point of the hexagonal ferrite magnetic particles and pH* denotes a pH of the aqueous magnetic liquid, which is a value of equal to or greater than 2.0, adding a surface-modifying agent comprising an alkyl group and a functional group that becomes an anionic group in the aqueous magnetic liquid to the aqueous magnetic liquid to subject the hexagonal ferrite magnetic particles to a surface-modifying treatment, and removing the water-based solvent following the surface-modifying treatment to obtain hexagonal ferrite magnetic particles.
Abstract:
Lithographic printing plates and processes for preparing the lithographic printing plates are provided. The plates have excellent printing durability, staining resistance and staining resistance over time. The lithographic printing plate precursor includes: a substrate; a photosensitive layer provided on the substrate; and an extra layer optionally provided between the substrate and the photosensitive layer. The photosensitive layer or the extra layer adjacent to the substrate contains (A) a copolymer. The copolymer (A) includes: (a1) a repeating unit of formula (a1-1) below in a side chain, and (a2) a repeating unit having at least one of the structures represented by formulae (a2-1) to (a2-6) shown in the specification in a side chain. L1, Z1, R1, and R21, R22 and R23 in formula (a1-1) and the variables in formulae (a2-1) to (a2-6) are as defined in the specification.
Abstract:
Hexagonal ferrite magnetic particles have an activation volume ranging from 1,000 nm3 to 1,500 nm3, and ΔE10%/kT, thermal stability at 10% magnetization reversal, is equal to or greater than 40.